باز کردن منو اصلی

عدد اول

عدد طبیعی بزرگ‌تر از یک، که جز یک و خودش هیچ مقسوم علیه دیگری نداشته باشد.
(تغییرمسیر از اعداد اول)
غربال اراتوستنس الگوریتمی ساده و قدیمی برای یافتن همهٔ اعداد اول تا عدد صحیح برگزیده است. این الگوریتم پیش از غربال آتکین، که سریع‌تر و پیچیده‌تر بود، مورد استفاده قرار می‌گرفت. غربال اراتوستنس را اراتوستنس، ریاضیدان یونان باستان در قرن سوم پیش از میلاد ابداع کرد.

عدد اول عددی طبیعی بزرگ‌تر از ۱ است که بر هیچ عددی به جز خودش و ۱ بخش‌پذیر نباشد.[۱] تنها استثنا عدد ۱ است که جزو این اعداد قرار نمی‌گیرد. اگر عددی طبیعی و بزرگتر از ۱ اول نباشد مرکب است.[۲]

پیدا کردن رابطه‌ای جبری برای اعداد اول جزء یکی از معماهای ریاضی باقی مانده‌است و هنوز کسی به فرمولی برای آنها دست نیافته‌است.

دنبالهٔ اعداد اول به این صورت شروع می‌شود:

۲، ۳، ۵، ۷، ۱۱، ۱۳، ۱۷، ۱۹، ۲۳، ۲۹، ۳۱، ۳۷، ۴۱، ۴۳، ۴۷، ۵۳، ۵۹، ۶۱، ۶۷، ۷۱، ۷۳، ۷۹، ۸۳، ۸۹، ۹۷، ۱۰۱، ۱۰۳، ۱۰۷، ۱۰۹، ۱۱۳، ۱۲۷، ۱۳۱، ۱۳۷، ۱۳۹[۳]

محتویات

قضیه‌هاویرایش

به این اثبات دقت کنید از برهان خلف استفاده می‌کنیم:

فرض خلف : اعداد اول متناهی است.

اعداد اول را در هم ضرب می‌کنیم.

 

ضرب اعداد از   بزرگ‌تراست.

 

 

 

 

 

 

 

 

 

 

که عدد یک جزء اعداد اول نیست پس به تناقض می‌رسیم و فرض خلف باطل است. اعداد اول نامتناهی هستند.

  • قضیه ۲ (قضیه اساسی حساب): هر عدد طبیعی مرکب بزرگ‌تر از ۱ را می‌توان به شکل حاصل‌ضرب اعدادی اول نوشت.
  • قضیه ۳ (قضیه چبیشف):اگر n عددی طبیعی و بزرگ‌تر از ۳ باشد، حتماً بین n و ۲n عدد اولی وجود دارد.
  • قضیه ۴ (قضیه اردیش (تعمیم قضیه چبیشف)): برای هر عدد طبیعی k، وجود دارد یک عدد طبیعی مثل N، که برای هر n>N، بین n و 2n,

k عدد اول وجود دارد.

  • قضیه ۵: تنها زمانی مجموع دو عدد اول عددی فرد می‌شود که یکی از آنها عدد ۲ باشد. زیرا عدد ۲ تنها عدد اول زوج است.
  • قضیه ۶: عددی اول است که به اعداد اول کوچکتر یا مساوی با مجذور خودش بخش پذیر نباشد.[۴]
  • قضیه ۷: رقم یکان اعداد اول بزرگ‌تر از ۱۰ فقط ممکن است ارقام ۱، ۳، ۷، و ۹ باشد.

قضایای اعداد اولویرایش

حدس گلدباخ (تاکنون اثبات نشده): هر عدد زوج را می‌توان به شکل جمع دو عدد اول نوشت.

 

مثال:

 

 

 

 

 

 

 

 

 

 

 

 

۲. حدس قوی گلدباخ : هر عدد فرد بزرگتر از ۵ را می توان به صورت مجموع ۳ عدد اول نوشت.

تابع شمارش اعداد اولویرایش

در ریاضیات تابع شمارش اعداد اول تابعی است که برای بیان تعداد اعداد اول به کار می‌رود و آن را با نماد   نمایش می‌دهند.

ریاضیدان فرانسوی پیر دوسارارت ثابت کرد که برای x ≥ ۵۹۹ رابطه زیر برقرار است:

 

همچنین ثابت کرد که برای هر x ≥ ۳۵۵۹۹۱:

 

بعدها ثابت شد که برای هر ε>۰ وجود دارد عددی طبیعی ماننده s که برای هر x>s رابطه زیر برقرار است:

 

قضیه اعداد اول (prime number theorem)ویرایش

اگر  تعداد اعداد اول کمتر از   باشد

آنگاه  

     
۱۰ ۴ ۰٫۹۲۱
102 ۲۵ ۱٫۱۵۱
103 ۱۶۸ ۱٫۱۶۱
104 ۱٬۲۲۹ ۱٫۱۳۲
105 ۹٬۵۹۲ ۱٫۱۰۴
106 ۷۸٬۴۹۸ ۱٫۰۸۴
107 ۶۶۴٬۵۷۹ ۱٫۰۷۱
108 ۵٬۷۶۱٬۴۵۵ ۱٫۰۶۱
109 ۵۰٬۸۴۷٬۵۳۴ ۱٫۰۵۴
1010 ۴۵۵٬۰۵۲٬۵۱۱ ۱٫۰۴۸
OEIS A006880 A057835

با استفاده از قضیه اعداد اول می‌توان اثبات کرد که:

 

که در آن تابع  ، تابع مولد اعداد اول باشد. یعنی x امین عدد اول  

اثبات مطلب بالا به شرح زیر است:

می‌دانیم  

 

می‌دانیم توابع   و   معکوس هم هستند. یعنی:

 

در نتیجه می‌توان با حل معادله   تابع   را یافت.

می‌دانیم  

پس با حل معادله   می‌توان هم‌ارزی برای   یافت.

به روش تکرار ساده معادله را حل می‌کنیم.

 

 

 

اما باید توجه داشت چون به جای   از تابع هم ارز آن استفاده شده پس:

 

در نتیجه:

 

قضیه ویلسون راهی برای تشخیص اعداد اولویرایش

قضیه ویلسون راهی برای تشخیص اعداد اول است. این قضیه بیان می‌کند به ازای هر عدد اول مانند   داریم  

این قضیه دوشرطی است بنابراین راهی برای تشخیص اعداد اول از مرکب است یعنی:

برای هر عدد صحیح x اگر رابطه زیر برقرار باشد آنگاه x عددی اول است در غیر این صورت x عددی مرکب است.

   

این قضیه تعمیم‌هایی به شکل زیر دارد:

تعمیم گاوس: کارل فریدریش گاوس ریاضیدان آلمانی در سال ۱۸۰۰ میلادی ثابت کرده که برای هر عدد طبیعی m>۲ عدد اول p

 

در اینجا   عددی صحیح و مثبت است.

بزرگترین عدد اول کشف شدهویرایش

بزرگ‌ترین عدد اول کشف شده تا (۲۰۱۶) برابر دو به توان ۷۴ میلیون و ۲۰۷ هزار و ۲۸۱ منهای یک است.[۵] این عدد ۲۲٬۳۳۸٬۶۱۸ رقم دارد و یک عدد مرسن است. عدد مرسن عددی است که برابر ۲ به توان n منهای یک است. در سال ۲۰۱۸، طولانی‌ترین عدد اول که دارای ۲۳ میلیون رقم است؛ کشف شد. این عدد اول نیز یک عدد مرسن است که در جریان محاسبات در رایانه یک مهندس برق به نام جاناتان پیس در آمریکا در جریان پروژه‌ای برای کشف اعداد اول به نام «تحقیق اینترنتی بزرگ عدد مرسن» (GIMPS) کشف شد. این عدد را به اختصار و به‌طور قراردادی، M77232917 نامیده‌اند. پژوهش‌ها برای یافتن عددهای اول بزرگ دشوار و نیازمند نرم‌افزارهای خاص و همکاری علمی پژوهشگران هستند.[۶]

جایزه‌ها برای پیدا کردن اعداد اولویرایش

مؤسسه Electronic Frontier Foundation جایزه‌ای به مبلغ صدهزار دلار برای اولین کسی که یک عدد اول با حداقل ۱۰ میلیون رقم پیدا کند در نظر گرفته‌است. همچنین مبلغ ۱۵۰ هزار دلار برای کسی که یک عدد اول با ۱۰۰ میلیون رقم و ۲۵۰ هزار دلار برای ۱ میلیارد رقم در نظر گرفته شده‌است. این مؤسسه ممکن است مبلغ ۱۰۰ هزار دلار برای دپارتمان ریاضی دانشگاه UCLA که موفق به کشف یک عدد اول ۱۳ میلیون رقمی شدند پرداخت کند.

الگوهای توزیع اعداد اولویرایش

یکی از مسائل مورد توجه ریاضی‌دانان، چگونگی توزیع و ترتیب قرارگرفتن اعداد اول درون رشته اعداد طبیعی است. این چگونگی دارای الگوهایی است که یکی از آنها به «الگوی پیشرفت عددی» معروف است.
مثلاً اگر به عدد ۵ که عددی اول است، ۶ واحد اضافه کنیم به ۱۱ و اگر به ۱۱، ۶ واحد اضافه کنیم به ۱۷ و اگر دوباره اضافه کنیم، به ۲۳ و ۲۹ می‌رسیم که همگی اعدادی اولند. اما با اضافه کردن ۶ واحد دیگر به ۳۵ می‌رسیم که عددی اول نیست و الگو متوقف می‌گردد.

مسئله مورد توجه اینست که در هر الگوی پیشرفت چند عدد اول پیش از رسیدن به اولین عدد غیر اول، بدست می‌آیند؟ طولانی‌ترین رشته‌ای که تاکنون بدست آمده، ۲۲ عدد اول را شامل است. اولین عدد اول این رشته ۱۱۴۱۰۳۳۷۸۵۰۵۵۳ بوده که اگر عدد ۴۶۰۹۰۹۸۶۹۴۲۰۰ به آن اضافه شود عدد اول بعدی بوجود می‌آید و می‌توان ۲۲ بار عدد مذکور را به اعداد اول مرحله قبل افزود و عدد اولی جدید بدست آورد. دو ریاضی‌دان اثبات کرده‌اند برای هر رشته از اعداد اول می‌توان به یک رشته عددی رسید.[۷]

جستارهای وابستهویرایش

پانویسویرایش

  1. Anne, Henderson (2012). Dyslexia, dyscalculia and mathematics : a practical guide (به English) (2nd ed ed.). London: Routledge. p. 62. ISBN 1136636625. OCLC 828741183.
  2. Gardiner, A. Anthony (1997). The Mathematical Olympiad handbook : an introduction to problem solving based on the first 32 British mathematical olympiads 1965-1996 (به English). Oxford: Oxford University Press. ISBN 0198501056. OCLC 37024771.
  3. (دنبالهٔ A000040 در OEIS)
  4. Mollin, Richard A (2002-02-01). "A Brief History of Factoring and Primality Testing B. C. (Before Computers)". Mathematics Magazine (به English). 75 (1): 18. doi:10.2307/3219180.
  5. "Mersenne Prime Number discovery - 274207281-1". Great Internet Mersenne Prime Search.
  6. «کشف طولانی‌ترین عدد اول با 23 میلیون رقم». خبرگزاری جمهوری اسلامی. دریافت‌شده در ۲۰۱۸-۰۱-۰۶.
  7. ماهنامه علمی-فنی دانشمند، شماره ۵۳۷، ص ۱۷

منابعویرایش

  • مشارکت‌کنندگان ویکی‌پدیا. «Prime_number». در دانشنامهٔ ویکی‌پدیای انگلیسی.
  • محسنیان، محمد. «کندوکاو مسئله‌ای دیرینه در زمینه اعداد اول». ماهنامه علمی-فنی دانشمند، تیر ۱۳۸۷، شماره پیاپی ۵۳۷، ص ۱۷.

کتاب ماجراهای من و درسام آمار واحتمال یازدهم ریاضی خیلی سبز