باز کردن منو اصلی

تبدیل لاپلاس

یکی از انواع تبدیلات انتگرالی در ریاضیات

ترادیس لاپلاس (یا تبدیل لاپلاس) (به انگلیسی: Laplace transform) در ریاضیات یک تبدیل انتگرالی است که بسیار پرکاربرد است. ترادیس لاپلاس با نماد در واقع عملگری خطی از تابع (f (t با آرگومان حقیقی (t (t ≥ ۰ به تابع (F (s با آرگومان مختلط s است. در بسیاری از کاربردهای عملی، این ترادیس به صورت دوسویه عمل می‌کند. ویژگی مهم این ترادیس آن است که بسیاری از رابطه‌ها و تغییراتی که بر روی تابع اصلی (f (t برقرار هستند، در ترادیس یافتهٔ آن (F (s نیز با رابطه‌ای ساده و منطقی برقرار‌اند. [۱]

این ترادیس به افتخار پیر لاپلاس یعنی کسی که آن را در یکی از کارهایش بر روی نظریهٔ احتمالات معرفی کرده بود، ترادیس لاپلاس گذاشته شده‌است.

ترادیس لاپلاس شبیه به ترادیس یا تبدیل فوریه است با این تفاوت که ترادیس فوریه یک تابع را به حالت‌های ارتعاشی‌اش تجزیه می‌کند ولی ترادیس لاپلاس آن را به momentهایش تجزیه می‌کند. ترادیس‌های لاپلاس و فوریه هر دو برای حل معادله‌های دیفرانسیلی و انتگرالی کاربرد دارند. در فیزیک و مهندسی از این ترادیس برای تحلیل سامانهٔ نامتغیرهای خطی زمان مانند مدارهای الکتریکی، ابزارهای نوری، و سامانه‌های مکانیکی استفاده می‌شود. در بیشتر موارد، ترادیس لاپلاس برای تبدیل سامانه‌هایی با ورودی و خروجی وابسته به زمان به سامانه‌ای وابسته به بسامد زاویه‌ای مختلط با یکای رادیان بر واحد زمان است. به عبارت دیگر، اگر سامانه‌ای را در نظر بگیریم که توصیف ریاضی یا تابع ورودی و خروجی آن را داشته باشیم، ترادیس لاپلاس آن به ما کمک می‌کند تا تابع جایگزینی را پیدا کنیم که تحلیل رفتار این تابع را آسان‌تر می‌کند.

روش تبدیل لاپلاس، روش عملیاتی است که می‌تواند در حل معادلات دیفرانسیل خطی سودمند باشد . به کمک تبدیل‌های لاپلاس می‌توان بسیاری از توابع متداول نظیر توابع سینوسی، توابع سینوسی میرا، و توابع نمایی را به توابع جبری با یک متغیر مختلط تبدیل کرد . عملیات جبری در صفحات مختلط می‌توانند جای عملیاتی مانند مشتق‌گیری و انتگرال‌گیری را بگیرند . از این رو یک معادله دیفرانسیل خطی را می‌توان به یک معادله جبری با یک متغیر مختلط تبدیل کرد . آنگاه جواب معادله دیفرانسیل را می‌توان به کمک جدول تبدیل لاپلاس یا روش تجزیه به کسرهای ساده بدست آورد .

یکی از مزایای روش تبدیل لاپلاس در این است که استفاده از روش‌های ترسیمی برای پیش‌بینی عملکرد سیستم را بدون حل واقعی معادلات دیفرانسیل سیستم میسر می‌سازد . مزیت دیگر آن در این است که با حل معادله دیفرانسیل، می‌توان هر دو مؤلفه گذرا و حالت ماندگار جواب را یکجا بدست آورد .

محتویات

پیشینهویرایش

ترادیس لاپلاس به بزرگداشت ریاضی‌دان و ستاره‌شناس فرانسوی پیر لاپلاس نامگذاری شده‌است. او اولین بار از این ترادیس در یکی از کارهایش بر روی نظریهٔ احتمالات استفاده کرد. از سال ۱۷۴۴ لئونارد اویلر شروع به تحقیق دربارهٔ انتگرال‌هایی با فرم زیر کرد:

 

او از این ترادیس برای حل معادله‌های دیفرانسیل استفاده کرد ولی بیش از آن در این زمینه پیگیری نکرد.[۲] ژوزف لویی لاگرانژ از کسانی بود که از اویلر تأثیر گرفته‌اند، او در مطالعاتش بر روی انتگرال‌گیری از تابع چگالی احتمال رابطه‌هایی با شکل زیر را به دست آورد:

 

برخی تاریخ نگاران امروزی از آن با نام نظریهٔ ترادیس نوین لاپلاس (به انگلیسی: modern Laplace transform theory) یاد کرده‌اند.[۳][۴][نیازمند شفاف‌سازی]

به نظر می‌رسد این گونه انتگرال‌ها اولین بار در سال ۱۷۸۲ مورد توجه لاپلاس قرار گرفته‌اند. در آن دوران، او تلاش می‌کرد تا مانند اویلر از خود انتگرال‌ها به عنوان راه حل معادله‌ها استفاده کند.[۵]. وی در سال ۱۷۸۵ گام اصلی را به جلو برداشت و به جای این که تنها به دنبال به دست آوردن یک جواب انتگرالی باشد سعی کرد بر روی خود ترادیس، تغییرهای لازم را بدهد. او ابتدا از انتگرالی با شکل زیر استفاده کرد:

 

تعریفویرایش

ترادیس لاپلاس تابع (f (t در مجموعهٔ اعداد حقیقی برای t ≥ ۰ تابع (F (s است که به صورت زیر تعریف می‌شود:

 

پارامتر s عددی مختلط است که:

  با σ و ω حقیقی.

ترادیس لاپلاس دو طرفهویرایش

این ترادیس روی تابع‌هایی که روی کل   تعریف شده‌اند اعمال می‌شود و به صورت زیر است:

 

ویژگی‌های تبدیل لاپلاسویرایش

ویژگی‌های تبدیل لاپلاس یک طرفه
حوزه زمان حوزه s توضیح
رابطه خطی     Can be proved using basic rules of integration.
Frequency-domain derivative     F is the first derivative of F with respect to s.
Frequency-domain general derivative     More general form, nth derivative of F(s).
Derivative     f is assumed to be a differentiable function, and its derivative is assumed to be of exponential type. This can then be obtained by integration by parts
Second derivative     f is assumed twice differentiable and the second derivative to be of exponential type. Follows by applying the Differentiation property to f′(t).
General derivative     f is assumed to be n-times differentiable, with nth derivative of exponential type. Follows by mathematical induction.
Frequency-domain integration     This is deduced using the nature of frequency differentiation and conditional convergence.
Time-domain integration     u(t) is the Heaviside step function and (uf)(t) is the convolution of u(t) and f(t).
Frequency shifting    
Time shifting     u(t) is the Heaviside step function
Time scaling      
Multiplication     The integration is done along the vertical line Re(σ) = c that lies entirely within the region of convergence of F.[۶]
Convolution    
Complex conjugation    
Cross-correlation    
Periodic function     f(t) is a periodic function of period T so that f(t) = f(t + T), for all t ≥ 0. This is the result of the time shifting property and the geometric series.

تبدیل لاپلاس‌های پرکاربردویرایش

تابع حوزه زمان
 
Laplace s-حوزه
 
ناحیه تبدیل منبع
unit impulse     all s inspection
delayed impulse     time shift of
unit impulse
unit step     Re(s) > 0 integrate unit impulse
delayed unit step     Re(s) > 0 time shift of
unit step
ramp     Re(s) > 0 integrate unit
impulse twice
nth power
(for integer n)
    Re(s) > 0
(n > −۱)
Integrate unit
step n times
qth power
(for complex q)
    Re(s) > 0
Re(q) > −۱
[۷][۸]
nth root     Re(s) > 0 Set q = 1/n above.
nth power with frequency shift     Re(s) > −α Integrate unit step,
apply frequency shift
delayed nth power
with frequency shift
    Re(s) > −α Integrate unit step,
apply frequency shift,
apply time shift
exponential decay     Re(s) > −α Frequency shift of
unit step
two-sided exponential decay
(only for bilateral transform)
    α < Re(s) < α Frequency shift of
unit step
exponential approach     Re(s) > 0 Unit step minus
exponential decay
sine     Re(s) > 0 Bracewell 1978, p. ۲۲۷
cosine     Re(s) > 0 Bracewell 1978, p. ۲۲۷
hyperbolic sine     Re(s) > |α| Williams 1973, p. ۸۸
hyperbolic cosine     Re(s) > |α| Williams 1973, p. ۸۸
exponentially decaying
sine wave
    Re(s) > −α Bracewell 1978, p. ۲۲۷
exponentially decaying
cosine wave
    Re(s) > −α Bracewell 1978, p. ۲۲۷
natural logarithm     Re(s) > 0 Williams 1973, p. ۸۸
Bessel function
of the first kind,
of order n
    Re(s) > 0
(n > −۱)
Williams 1973, p. ۸۹
Error function     Re(s) > 0 Williams 1973, p. ۸۹
Explanatory notes:

پانویسویرایش

  1. Korn & Korn ۱۹۶۷, §۸٫۱
  2. Euler ۱۷۴۴, (۱۷۵۳) and (۱۷۶۹)
  3. Lagrange ۱۷۷۳
  4. Grattan-Guinness ۱۹۹۷, p. 260
  5. Grattan-Guinness ۱۹۹۷, p. 261
  6. Bracewell 2000, Table 14.1, p. 385
  7. Lipschutz, S.; Spiegel, M. R.; Liu, J. (2009), Mathematical Handbook of Formulas and Tables, Schaum's Outline Series (3rd ed.), McGraw-Hill, p. 183, ISBN 978-0-07-154855-7 – provides the case for real q.
  8. http://mathworld.wolfram.com/LaplaceTransform.html – Wolfram Mathword provides case for complex q

منابعویرایش

نوینویرایش

  • Korn, G.A.; Korn, T.M. (1967), Mathematical Handbook for Scientists and Engineers (2nd ed.), McGraw-Hill Companies, ISBN 0-0703-5370-0.

تاریخیویرایش

  • Euler, L. (1744), "De constructione aequationum", Opera omnia, 1st series, 22: 150–161.
  • Euler, L. (1753), "Methodus aequationes differentiales", Opera omnia, 1st series, 22: 181–213.
  • Euler, L. (1769), "Institutiones calculi integralis, Volume 2", Opera omnia, 1st series, 12، Chapters 3–5.
  • Grattan-Guinness, I (1997), "Laplace's integral solutions to partial differential equations", in Gillispie, C. C., Pierre Simon Laplace 1749–1827: A Life in Exact Science, Princeton: Princeton University Press, ISBN 0-691-01185-0.
  • Lagrange, J. L. (1773), Mémoire sur l'utilité de la méthode, Œuvres de Lagrange, 2, pp. 171–234.

پیوند به بیرونویرایش