میکروسکوپهای پراب پویشی (به انگلیسی: SPM:Scanning probe microscope) از یک پراب که بر روی نمونه حرکت میکند، برای بررسی سطح نمونهها استفاده میکنند. با استفاده از این میکروسکوپها علاوه بر توپوگرافی سطح، میتوان راجع به اصطکاک، مغناطش، خواص حرارتی و الاستیسیتهی سطح نیز اطلاعاتی بدست آورد که با استفاده از روشهای دیگر قابل دستیابی نیستند.
در این میکروسکوپ، نوک یک پروب سالم و ایده آل، بسیار تیز بوده، بطوریکه در نوک آن تنها یک اتم جای میگیرد؛ بنابراین از حساسیت بسیار بالایی برخوردار است و به دلیل ابعاد بسیار کوچک خود میتواند در حد نانومتر، کوچکترین پستی یا بلندیها را در سطح نمونه آنالیز نماید و با استفاده از تجهیزات و نرم افزارهای موجود در دستگاه، دادههای بدست آمده را به صورت تصویر بر نمایشگر نمایش دهد.
خیلی از میکروسکوپهای پراب پویشی میتوانند تعداد زیادی از تصاویر را همزمان بگیرند. روش استفاده از این فعل و انفعالات برای به دست آوردن یک تصویر به طور کلی یک مود خوانده میشود. وضوح با هر تکنیک مخلتف مقداری تفاوت می کند، اما بعضی از تکنیک ها به وضوح اتمی چشمگیری می رسند. این تا حد زیادی ناشی از این است که فعال کننده های فشار برقی (به انگلیسی: piezoelectric actuators) می توانند حرکت را با دقت در سطح اتمی، یا حتی بهتر الکترونی اجرا کنند. این خانواده از تکنیک می تواند "تکنینک فشار برقی" نامیده شود. روش متداول دیگر این است که داده ه به طور عادی از یک تور نقاط داده دو بعدی،تجسم شده در رنگ های دروغین(false colors) به عنوان یک تصویر کامپیوتری به دست می آیند.
نقطه شروع SPM، اختراع میکروسکوپ تونلی روبشیSTM در سال 1982 توسط بنیگ (G. Bennig) و روهرر (H. Rohrer) بود که جایزه نوبل فیزیک در سال 1986 برای این اختراع به آنان اختصاص یافت[۱][۲][۳]. کلید موفقیت انها استفاده از یک حلقه کنترل برای تنظیم کردن اندازه فاصله بین نمونه و پویشگر بود.
میکروسکوپ پروبی روبشی، در طی دو دههٔ بعد از اختراع شدنش، کاربرد گستردهای در آزمایشگاهها و صنایع مختلف از توسعه محیطهای ذخیره مغناطیسی تا بیولوژی ساختاری یافتهاست. در نتیجه، کاربران این روش از زیستشناسان و پژوهشگران پزشکی تا فیزیکدانان و مهندسین، از قدرت تفکیک بیرقیب و به کارگیری نسبتا آسان این روش، بهرهمند میشوند.
علاوه بر تکنیکهای ذکر شده در بالا، تکنیکهای متعدد دیگری نیز بر پایهٔ میکروسکوپهای پروبی روبشی به وجود آمدهاند که کاربردهای کمتری داشته و برای مقاصد خاص مناسب هستند. از جمله:
برای شکل دادن تصویر، میکروسکوپ پراب پویشی سطح را به صورت شطرنجی اسکن می کند. در نقاط گسسته اسکن شطرنجی، یک مقدار ضبط می شود.(مقدار به مدل SPM و مود عملیات بستگی دارد، پایین را مشاهده کنید). این مقادیر ضبط شده به عنوان یک نقشه حرارتی نشان داده می شوند تا تصویر STM پایانی را بسازند، که معمولا به رنگ سفید و سیاه یا مقیاسی از رنگ نارنجی است.
مود همیشه در تعامل ( constant interaction mode )ویرایش
در "مود همیشه در تعامل" (که معمولا به شکل"در بازخورد" به آن شاره می شود)، یک حلقه کنترل استفاده می شود تا پویشگرِ تحت مطالعه به صورت فیزیکی در محور z از سطح دور یا نزدیک شود تا یک تعامل همیشگی را ایجاد کند. این تعامل بستگی به نوع SPM دارد. برای میکروسکوپ تونلی روبشی این تعامل همان جریان تونل است، برای مود تماس AFM یا MFM شکست طّره است، و غیره. معمولا نوع حلقه کنترل حلقه PI است، که خود نوعی کنترل کننده ی PID است که در آن بهره تفاضلی به صفر میل می کند (در حالی که نویز ایجاد می کند). اگر سطح در حال اسکن را صفحه xy در نظر بگیریم جهت z نوک به طور متناوب ضبط می شود و به شکل یک نقشه حرارتی نشان داده می شود. به طور عادی به این توپوگرافی می گوییم.
در این مود یک تصویر دوم، که به اسم "سیگنال خطا" یا "تصویر خطا" شناخته می شود هم ضبط می شود، که یک نقشه حرارتی از تعاملی است که از آن بازخورد داشته ایم. در یک عملیات بی نقص این تصویر باید خالی باشد با یک مقدار ثابت که بر روی حلقه کنترل قرار داده شده بود. در یک عملیات واقعی تصویر نویز نشان می دهد و بعضی اوقات نشانه هایی از ساختار سطح را نمایان می کند. کاربر می تواند از این تصویر استفاده کند تا بهره کنترل را اصلاح کند و اشتباهات نشان داده شده داخل سیگنال خطا را به حداقل برساند.
اگر بهره ها اشتباه تنظیم شوند، تعداد زیادی تصویرات غلط می توانند ضبط شوند. اگر بهره ها خیلی پایین باشند، جزییات می توانند به صورت لکه دیده شوند. اگر بهره ها خیلی بالا باشند کنترل می تواند بی ثبات و نواساندار شود، که باعث می شود جزییات مخطط شوند در حالی که خطها به صورت فیزیکی وجود ندارند.
در مود همیشه مرتفع پویشگر هنگام اسکن شطرنجی در جهت محور z تکان داده نمی شود. در عوض مقدار تعامل تحت نظر ضبط می شود (به این معنی که جریان تونل برای STM، یا دامنه نوسان پایه برای AFM). این اطلاعات ضبط شده به شکل یک نقشه حرارتی نشان داده می شود، و به طور معمول به اسم تصویر همیشه مرتفع شناخته میشود.
تصویربرداری همیشه مرتفع خیلی از تصویربرداری همیشه در تعامل سختتر است. چون احتمال بیشتری وجود دارد که پویشگر به سطح نمونه برخورد کند. معمولا قبل اجرای تصویربرداری همیشه مرتفع باید تصویری در مود همیشه در تعامل ضبط شود تا چک شود که سطح نمونه هیچ نوع آلایندهای در منطقه تصویربرداری نداشته باشد، و همینطور برای اندازهگیری و اصلاح خمیدگی نمونه، مخصوصا برای اسکنهای کند، برای اندازهگیری و اصلاح رانش دمایی نمونه است.[۱۴]
ویژگیهای یک نوک پویشگر SPM کاملا به نوع SPM در حال استفاده بستگی دارد. ترکیب شکل نوک پویشگر و توپوگرافی نمونه یک تصویر SPM را تشکیل می دهند. [۱۵]اگرچه یکسری ویژگیها مربوط به اکثر SPMها میشوند.
مهمتر از همه این است که پویشگر راس خیلی تیزی داشته باشد. راس پویشگر وضوح تصویر میکروسکوپ را تعریف میکند، هرچه پویشگر تیزتر باشد، وضوح تصویر بیشتر میشود. برای وضوح تصویربرداری در حد اتمی راس پویشگر باید یک اتم باشد.
برای خیلی از SPMهای پایه ای، (مانند AFM، MFM) کل پایه و پویشگر یکپارچه با اسید شکل داده میشوند، یا همان شیوهی etching،[۱۶] و اکثرا با استفاده از اسید سیلیکون نیترید. پویشگرهای ساخته شده، که برای STM و SCM و چندین نوع دیگر SPM نیاز هستند، معمولا از سیم پلاتینیوم و یا ایریدیوم برای عملیاتهای محیطی ساخته می شوند، یا از تنگستن ساخته می شوند برای عملیات UHV. مواد دیگر همانند طلا بعضی وقتها برای نمونههای خاص استفاده میشوند یا اگر SPM با آزمایش دیگری همچون TERS ترکیب شود. پویشگرهای پلاتینیوم/ایریدیوم (و یا دیگر پویشگرهای محیطی) به شکلی معمولی با سیمبرهای تیز بریده می شوند، روش بهینه این است که بیشتر مسیر سیم را ببریم و در آخر بکشیم، که احتمال به وجود آمدن راس تک اتمی را بیشتر میکند. سیمهای تنگستن معمولا به شیوههای الکتروشیمیایی صیقل میخورند، بعد از آن هم زمانی که نوک پویشگر در شرایط UHVاست لایهی اکسید شده به طور معمول باید حذف شود.
آنقدراها برای پویشگر SPM غیر معمول نیست که با وضوح دلخواه تصویربرداری نکنند. تصویربرداری با وضوح نامطلوب می تواند حاصل این مسئله باشد که راس بیش از حد بزرگ است، یا چندین قله دارد، که باعث ضبط شدن دوبل تصویر یا شبح تصویر می شود. برای بعضی پویشگرها، در لحظه امکان بهبود بخشیدن راس هست، این کار معمولا یا فرو آوردن پویشگر به سطح است یا اعمال یک میدان الکتریکی بزرگ. مورد دوم با اعمال یک ولتاژ یکطرفه (از توان 10V) بین نوک و نمونه به دست میآید، چون این مسافت در حد 1 الی 3 آنگستروم است، یک میدان خیلی فوی به وجود می آید.
چون خلاء بسیار بالا و پرتوهای الکترونی به نمونههای زنده آسیب میرساند، در علوم زیستی بیشتر از میکروسکوپهای پروبی روبشی استفاده میشود. علاوه بر این به علت قابلیت مطالعهٔ نمونهها در محلول آبی، امکان بررسی را در شرایط شبه بیولوژیکی فراهم میکند.
میکروسکوپهای پروبی روبشی را میتوان برای تصویر برداری از اکثر مواد بکار برد. این تکنیکها برای تعیین خصوصیات سطحی مانند تخلخل، اندازه دانه، مرز دانه، ترکها، عیوب بلوری و ... بکار میرود.