افزاره بارجفت‌شده: تفاوت میان نسخه‌ها

محتوای حذف‌شده محتوای افزوده‌شده
جز ربات: تصحیح پیوند به پروژه‌های خواهر و تبدیل کردن پیوندها به خنثی در برابر پروتکل
MahdiBot (بحث | مشارکت‌ها)
جز ربات ردهٔ همسنگ (۲۴) +املا+مرتب+تمیز (۴،۸): + رده:پویشگرها
خط ۲۲:
 
=== Frame transfer CCD ===
معماری این نوع CCD برای مواقعی است که سرعت بالا و بازه تابش نور کمی را در حدود صد یا هزار میکروثانیه مد نظر دارید که البته با شاترهای معمولی قابل دسترسی نیست.Frame Transfer شامل یک رجیستر موازی است که به دو قسمت تقسیم شده است. نور در قسمت بالائی این رجیستر موسوم به آرایه تصویر متمرکز می شود. ناحیه دوم موسوم به آرایه ذخیره نیز مقدار آرایه تصویر را گرفته و به عبارتی با آن برابر می‌شود و یک ماسک کدر بر روی ناحیه موقتی عکس گذاشته می شود. یک بار که آرایه تصویر در معرض نور قرار گرفت، سیگنال به سرعت به آرایه ذخیره شیفت داده می شود. در هنگامیکه آرایه ذخیره خوانده می شود، آرایه تصویر می تواند سیگنال دیگری را دریافت کند. پس علیرغمعلی‌رغم غیاب یک شاتر پرسرعت، Frame Transfer بطور پیوسته کار می کند.Frame Transfer هائی که از روبرو در معرض نور قرار می گیرند هنوز مشکل Full Frameها را دارند یعنی مقدار کم QE در بازهٔ طیف مرئی با QE بسیار پائین در UV.خاصیت هائی نظیر CCDهای از پشت در معرض تابش، کارکرد بدون شاتر، سرعت فریم نسبتاً بالا و QE بالا از مزایای کاربردی طراحی Frame Transfer است.
 
=== Interline CCD ===
معماری Interline در جستجوی زیاد برای سرعت طراحی شد. این نوع CCD برای کاربردهای پرسرعت VIS-NIR با شدت سیگنال متوسط تا زیاد، ایده آلایده‌آل است. به هر حال بدست آوردن سرعت بالا و کار پیوسته در این نوع CCD با هزینه همراه است و عواقب آن کاهش حساسیت مخصوصاً در محدودهٔ UV است.Interline شامل آرایه هائی کشیده از دیودهای حساس نوری است که به طور الکتریکی به یک ذخیره کنندهٔ CCD در پائین ناحیه پوشیده شده متصل هستند. نواحی پوشیده شده و نواحی حساس به نور به طور متناوب در طول محورهای عمودی CCD گسترده شده اند. مشخصه QE ناحیه پیکسل دیود، عالی است ولی به هر حال فقط ۲۵% از ناحیه CCD دارای دیودهای فعال است و این به معنی fill factor ۲۵% است. در نتیجه مقدار فتوالکترونها در واحد مساحت کاهش یافته اند.
 
== [http://www.princetoninstruments.com/Uploads/Princeton/Documents/Library/UpdatedLibrary/Hybrid_Sensor_Technology.pdf Hybrid Sensor Technology] ==
 
این نوع CCD مزایای آشکارسازهای CCD و CMOS را برای یک آشکارساز اختصاصی طیف سنج با حساسیت و سرعت‌های غیر منطبق فراهم می کند.در CCDهای طیف نمای قدیمی، فتونهای نوری به الکترون تبدیل می شوند و در آرایه ای دو بعدی از پیکسل‌ها ذخیره می شوند. الکترونهای ذخیره شده هر پیکسل به طور عمودی به رجیستر آخر شیفت داده می شوند که به آن رجیستر افقی گفته می شود. هر پیکسل از این رجیستر تمامی الکترونهای یک ستون را در فرآیندیفرایندی به نام binning در خود جمع می کند. سپس الکترونهای جمع شده در رجیستر افقی به صورت افقی به گره خروجی شیفت داده می شوند، در آنجا خوانده شده و به سیگنالهای ولتاژ تبدیل می شوند.سنسورهای CMOS نیز در فرآیندیفرایندی شبیه به CCDها فتونها را تبدیل می کنند و تنها تفاوت در معماری و خواندن است. در وسایل CMOS، هر پیکسل شامل یک مدار باز خوانی است که مقدار فضای پیکسل را اشغال می کند. این موضوع باعث کاهش fill factor و حساسیت می‌شود که روشنائی از پشت CMOS را غیر عملی می سازد. از سوئی دیگر این مدارات الکترونیکی مزایائی نیز دارند که از آن جمله می توان به دسترسی تصادفی به هر پیکسل، باز خوانی بدون تخریب (بی نقص) و بسیاری مزایای دیگر اشاره نمود. CMOS شرایطی را فراهم می‌کند که الکترونیک آنالوگ و دیجیتال در یک چیپ باشند که باعث کاهش اندازه و هزینه می شود. چند مدار بازخوانی و مدار الکترونیکی پردازشگر می توانند به یک پیکسل CMOS مرتبط شوند تا موجب کارکرد موازی شوند. این عمل باعث تحصیل سرعت بالاتر در مقایسه با CCDها می‌شود که در آنها عمل بازخوانی، یک فرآیندفرایند زنجیره ای طولانی است. تکنولوژی سنسور مختلط(HST) بازدهی وسایل CCD را به قابلیت پردازش آنالوگ و دیجیتال CMOS پیوند می دهد. مشابه CCDهای سنتی ، CCD فتونها را در گودالهای پتانسیل خود دریافت و تبدیل می کند. CCD می تواند از مقابل و از پشت، نور را دریافت کند که این امر موجب ایجاد حساسیت بالاتری نسبت به CMOSهای سنتی می شود. بار الکتریکی هر پیکسل توسط رجیسترهای عمودی به رجیستر افقی انتقال می یابد که این عمل همانند CCDهای قدیمی است و در عوض در این مرحله به جای شیفت بارها به طور افقی در رجیستر افقی، بار جمع شده به یک CMOS آشکار ساز مختلط جدید انتقال می دهد.تکنولوژی ساخت بدلیل اتصال چیپ‌های سیلیکون CCD به سیلیکون CMOS، بی نیاز از تقویت کننده‌های روی چیپ است. پس از اتمام انتقال، بار الکتریکی توسط یک تقویت کننده با نویز پائین ((LNA(۱) تقویت می شود. برای دستیابی به کارائی بالا و بدون نویز، تقویت کننده در فرکانسهای در محدوده KHz کار می کند. به هر حال از آنجائیکه بازخوانی به زیر شبکه هائی تقسیم می‌شود که هر یک دارای خروجی مختص به خود و متصل به یک مدار تقویت کننده مخصوص CMOS هستند، نتیجه کلی، خروجی با سرعتی بالا را فراهم می کنند.
 
== کاربرد در ستاره شناسی ==
 
با توجه به [//en.wikipedia.org/wiki/Quantum_efficiency راندمان بالای کوانتوم] در CCDها، خطی بودن خروجی ها، سهولت استفاده در مقایسه با صفحات عکاسی، و بسیاری دلیل دیگر ، CCDها به سرعت توسط ستاره شناسها برای تقریباتقریباً تمامی کاربردهای UV-to-Infrared مورد استفاده قرار گرفته اند. نویز حرارتی و اشعه‌های کیهانی ممکن است موجب تغییر پیکسل در آرایه‌های CCDها شود. برای مقابله با این آثار ستاره شناسان چندین بار CCDها را با شاتر باز و بسته در ‎معرض اشعه قرار میدهند. به طور خاص، تلسکوپ [//en.wikipedia.org/wiki/Hubble_Space_Telescope Hubble]، یک سری مراحل پیشرفته را برای تبدیل داده‌های خام CCDها به عکسهای مفید انجام میدهد.
دوربین‌های CCDاستفاده شده در[[:w:en:Astrophotography|Astrophotography ]] معمولاً نیازمند قاب‌های محکم و سکوهای تصویر برداری بسیار سنگین هستند تا بتوانند با لرزش‌های ناشی از جریانهای باد و دیگر منابع، مقابله کنند.
برای گرفتن عکسهای با زمان طولانی باز بودنبازبودن دریچه دوربین، از کهکشان‌ها و سحابی‌ها، ستاره شناسان معمولاً از سیستم‌های هدایت خودکاراستفاده میکنند .
اکثر دستگاه‌های هدایت خودکار از تراشه CCDثانویه ای برای نظارت بار انحرافات در طول زمان تصویر برداری استفاده میکنند. این تراشه میتواند به سرعت خطاهای رخ داده در ردیابی را شناسایی کرده و به موتورهای ‎تعبیه شده در قاب دوربین دستورات لازم برای اصلاح خطای ایجاد شده را میدهد.
یکی از کاربردهای جالب CCDها در زمینه نجوم، که Drift-Scanning نامیده می‌شود، استفاده از CCDها برای تبدیل یک تلسکوپ ثابت به تلسکوپی است که بتواند حرکت آسمان را دنبال و ردیابی کند.
[[:w:en:Sloan_Digital_Sky_Survey|Sloan Digital Sky Survey]] یکی از معروف‌ترین نمونه‌های این نوع است.
علاوه بر ستاره شناسی، CCDها در [[:w:en:Monocromator|Monocromator ها]]ها،، [[:w:en:Spectrometer|Spectrometer ها]]ها،، [[:w:en:N-Slit_interferometer|N-Slit interferometerinterferometerها]]ها استفاده میشوند.
 
== دوربین‌های رنگی ==
 
هر CCD از میلیونها سلول بنام فتوسایت یا فتودیود تشکیل شده است. این نقاط در واقع سنسورهای حساس به نوری هستند که اطلاعات نوری را به یک شارژ الکتریکی تبدیل می‌نمایند.وقتی اجزای نور که فتون نامیده می‌شود وارد بدنه سیلیکون فتوسایت می شود، انرژی کافی برای آزادسازی الکترونهایی که با بار منفی شارژ شده اند ایجاد می گردد. هر چه نور بیشتری وارد فتوسایت شود، الکترونهای بیشتری آزاد می شود. هر فتوسایت دارای یک اتصال الکتریکی می‌باشد که وقتی ولتاژی به آن اعمال می شود، سیلیکون زیر آن پذیرای الکترونهای آزاد شده می‌شود و همانند یک خازن برای آن عمل می کند. بنابر این هر فتوسایت دارای یک شارژ ویژه خود می‌باشد که هر چه بیشتر باشد، پیکسل روشنتری را ایجاد می کند. مرحله بعدی در این فرآیندفرایند بازخوانی و ثبت اطلاعات موجود در این نقاط است. وقتی که شارژ به این نقاط وارد و خارج می شود، اطلاعات درون آنها حذف می‌شود و از آنجایی که شارژ هر ردیف با ردیف دیگر کوپل می شود، مثل اینست که اطلاعات هر ردیف پشت ردیف قبلی چیده شود.
[[پرونده:Ccd-sensor.jpg|بندانگشتی|راست| CCD-Colorsensor.]]
 
سپس سیگنال‌ها در حد امکان بدون نویز وارد تقویت کننده شده و سپس وارد ADC می شوند. فتوسایت‌های روی یک CCD فقط به نور حساسیت نشان می دهند، نه به رنگ. رنگ با استفاده از فیلترهای قرمز – سبز و آبی که روی هر پیکسل گذارده شده است شناسایی می شود. برای اینکه CCD از چشم انسان تقلید کند، نسبت فیلترهای سبز دو برابر فیلترهای قرمز و آبی است. این بخاطر اینست که چشم انسان به رنگهای زرد و سبز حساس تر است. چون هر پیکسل تنها یک رنگ را شناسایی می کند، رنگ واقعی (True Color) با استفاده از متوسط گیری شدت نور اطراف پیکسل که به میان یابی رنگ مشهور است، ایجاد می شود.جدیداجدیداً فوجی فیلم در طراحی CCD دست به ابداع جالبی زده است. این شرکت بجای استفاده از آرایش مربعی برای فتوسایت ها، از فتوسایت‌های کاملاکاملاً متفاوت هشت ضلعی بزرگتری که در ردیفهایی با زاویه ۴۵ درجه مرتب شده اند استفاده کرده است. با این کار مشکل نویزهای سیگنال که برای فشردگی فتوسایتها بر روی CCD محدودیت ایجاد می کرد حل شده است. با این کار رنگهایی واقعی تر و محدوده دینامیکی وسیعتر و حساسیت به نور بالاتر به دست می آید که نتیجه آن عکسهای دیجیتالی شارپ تر و با رنگهای جذاب تر می باشد. از سنسورهای CCD بیشتر در دوربینهای Outdoor استفاده می‌شود .
 
== منابع ==
خط ۵۳:
 
{{ویکی‌انبار-رده|CCD}}
 
 
{{عکاسی}}
 
سطر ۶۱ ⟵ ۵۹:
[[رده:اختراعات آمریکایی]]
[[رده:ادوات نیمه هادی]]
[[رده:پویشگرها]]
 
[[رده:تصویربرداری نجومی]]
[[رده:مدارهای مجتمع]]