مدار عصبی: تفاوت میان نسخه‌ها

محتوای حذف‌شده محتوای افزوده‌شده
Mercyse (بحث | مشارکت‌ها)
جز ویرایش نگارشی و مفهومی جزئی همچنین حذف یک جمله اشتباه درباره محدودیت بررسی نورون ها تنها درگراف به جای ریاضیات خطی, امار, سری ها زمانی و. . .
جز اصلاح متن با استفاده از AWB
خط ۳۴:
 
← مغز یک انسان بالغ از نورون‌ها، glial cells , رگ‌های خونی تشکیل شده است و تعداد تخمینی و دقیق تر نورون‌ها در حدود ۸۵±10 billion (میلیارد) هست که برابر با تعداد سلول‌های غیر نورونی مغز هست (۸۵±10 billion) که از مجموع این نورون‌ها
* در حدود ۱۶ میلیارد از نورون‌ها در [[:en:Cerebral_cortexCerebral cortex|cerebral cortex]] مغز قرار گرفته‌اند (به عبارت دیگر ۱۹٪ از تمام نورون‌های مغز) که شامل قشر [[:en:White_matterWhite matter|white matter]] مغز هم می‌شود.
* در حدود ۶۹ میلیارد نورون هم در قسمت [[:en:Cerebellum|cerebellum]] قرارگرفته‌اند (که ۸۰٪ از تمام نورون‌های مغز محسوب می شه)
* کمتر از ۱٪ نورون هم در قسمت‌های دیگر مغز قرار گرفته.
خط ۴۱:
* '''cerebellum _ Hindbrain''' به تنظیم وضعیت و هماهنگی بدن کمک می‌کند و همه حرکات بدن و واکنش هاش را بررسی و ممکن می‌کند. (آسیب دیده گی این بخش می‌تواند سبب عدم تعادل و لرزش در حرکت و در صورت آسیب دیدگی شدید، عدم حرکت در شخص را به دنبال دارد)
* [[:en:Cerebrum|'''cerebrum _ Forebrain''']] مرکز شخصیت فرد است و طیف بسیار گسترده‌تری از وظایف را نسبت به بقیه مناطق مغز برعهده دارد. از این وظایف می‌شود به تصمیم‌گیری، انتخاب آهنگ مورد علاقه، تمرکز، برنامه‌ریزی و سازماندهی، به داشتن حس و شناخت از جهان و رابطهٔ خود فرد با جهان "همان خودآگاهی" کمک می‌کند. cerebrum بیشترین تعداد نورون‌های حساس به دوپامین را داراست، محل تصمیم‌گیری برای حرکت هدفمند و گفتار (صحبت کردن), نحوه رفتار، همچنین اطلاعات دردسترس در این بخش مورد سازماندهی قرار می‌گیرد و باعث می‌شود فرد قابلیت اولویت بندی و اصلاح کردن خود و آغاز یا کنترل و یا تغییر رفتار را داشته باشد. (آسیب دیدگی این بخش می‌تواند شخصیت شخص را تغییر دهد. ان افراد دیگر نمی‌توانند شبیه خودشان عمل کنند. این افراد توانایی برنامه‌ریزی خودشان را از دست می‌دهند و توانایی کنترل رفتار خودشان را نیز ممکن از دست دهند و آسیب دیدگی شدید گاهی می‌تواند شخصیت این افراد را از آنها بگیرد و ...)
** [[:en:Prefrontal_cortexPrefrontal cortex|Prefrontal Cortex]] مسئول استدلال کردن، ترسیم تصویر از یک اتفاق، گفتن، راندن وسایلی مانند دوچرخه، مقایسه گذشته و آینده در جهت پیش بینی آنچه که ممکن است اتفاق بیفتد، بررسی ایده‌ها و ادراک در جهت کمک به فرایند تصمیم‌گیری و سئوچ کردن بین کارها، منحرف کردن افکار فرد از یک عمل قبل از شروع عمل دیگر. همچنین این بخش از مغز نقشی در خود آگاهی self-awareness , تشخیص احساسات، تجربه لذتها، در ذهن خوداگاه کمک به درک سریع بودن یا کند بودن زمان، عمل کردن به عنوان قطب احساسی و فراخوانی احساس غریزی در مورد شناخت درست از غلط. همچنین پردازش احساساتی از قبیل اضطراب و ناامیدی نیز در این بخش مغز صورت می‌گیرد. (این قسمت از مغز با توجه به اینکه در جلوی قسمت cerebrum _ Forebrain مغز قرار گرفته به راحتی با ضربات تصادفی یا کمبود اکسیژن در حملهٔ قلبی قابل آسیب دیدن است که در صورت آسیب دیدن طیف وسیعی از مشکلات رفتاری از جمله خشونت یا عدم حساسیت، مشکلاتی در شروع وظایفت و متمرکز ماندن در انجام آنها، عملگردهای نامناسب غیرارادی و بستری شدن در مراکز درمانی را به دنبال دارد. علاوه بر این افراد مبتلا به افسردگی دارای فعالیت غیرطبیعی در قشر جلوی مغز هستند و این منطقه ممکن است در [[اختلال وسواس فکری عملی]] <nowiki/>نیز درگیر باشند.
** [[:en:Dorsolateral_prefrontal_cortexDorsolateral prefrontal cortex|dorsolateral prefrontal cortex]] یا به اختصار DLPFC در میانه بخش قبل در انسان‌ها و پستانداران واقع شده است و نسبت به قسمت‌های دیگر یکی از بخش‌های تازه تکامل یافته مغز انسان محسوب می‌شود که تکامل ان تا هنگام بزرگسالی ادامه می‌یابد. همچنین به orbitofrontal cortex و قسمت‌های مختلف مغز که شامل بخش [[تالاموس|thalamus]] , [[عقده‌های قاعده‌ای|basal ganglia]] , [[:en:Hypothalamus|hippocampus]] و مناطق اصلی و ثانویه [[نئوکورتکس|neocortex]] هم متصل است. این بخش در کارهای اجرایی دخالت دارد که عملکردهایی از قبیل مدیریت فرایندهای شناختی [[:en:Cognition|cognitive processes]] که شامل حافظه کاری [[:en:Working_memoryWorking memory|working memory]] , [[:en:Cognitive_flexibilityCognitive flexibility|انعطاف‌پذیری شناختی]] و برنامه‌ریزی. همچنین وظایف رفتاری نیز به شدت مرتبط به این بخش به نظر می‌رسند و انجام وظایفی که نیاز به نگه داری اطلاعات در ذهن یا همان working memory را دارند. DLPFC برای به خاطر آوردن ایتم‌ها به صورت تکی مورد نیاز نیست بنابراین آسیب دیدگی این بخش سبب اختلال در حافظه شناختی یا [[:en:Dorsolateral_prefrontal_cortexDorsolateral prefrontal cortex|recognition memory]] نمی‌شود با این وجود در صورتی که فرد بخواهد دو آیتم را در حافضه با یکدیگر مقایسه کند دخالت بخش DLPFC نیز مورد نیاز خواهد بود. اشخاص با آسیب دیدگی DLPFC قادر نخواهند بود تصویری را که قبلاً به آنها نشان داده شده است را در بین دو تصویری که به آنها بعد از مدتی نشان می‌دهند را تشخیص دهند. بخش DLPFC در هنگام خواب فعال نیست و فقط پردازش زمان بیداری و واقعیت را بر عهده دارد. به همین ترتیب این بخش مکرراً همچنین با اختلالات رانندگی، توجه و انگیزه مرتبط دانسته شده. افرادی با آسیب دیدگی جزئی DLPFC عموماً احساس بی تفاوتی به محیط اطراف خود دارند و از خودانگیختگی در زبان و رفتار محروم اند همچنین این افراد به فقدان انگیزه برای انجام کاری برای خود و یا دیگران نیز دچار هستند.
* '''brainstem_''' قسمت زرد در تصویر بالا. این بخش هماهنگی فعالیت‌های خودکار یا رفلکس بدن را در فعالیت‌هایی که بدون تفکر انجام می‌گیرند مانند تنفس، تون عضلانی غیرارادی، فعالیت قسمت‌های مختلف بدن و وضعیت آنها، کمک به حفظ آگاهی از بدن، ضربان قلب، فشار خون، عطسه، سرفه، بیدارشدن از خواب و . . . را سازماندهی می‌کند و سازه اون که در بالای نخاج و زیر [[:en:Cerebrum|cerebrum]] و در مرکز مغز قرار داره مانند یک ساختمان هست که از بخش‌های (Diencephalon mid-brain , pons , medulla oblongata) تشکیل شده هست (آسیب دیدگی این بخش می‌تواند کشنده باشد، زمانی که عملکرد brainstem از دست می‌رود وضعیت شخص ممکن هست مرگ مغزی تشخیص داده شود. چون این قسمت از حول مغز دور هست آسیب دیدگی‌هایی مثل آسیب به سر و گردن، حمله قلبی و یا سکته مغزی، آنسفالیت، سموم مننژیت از جمله مونوکسید کربن (درحدود ۶۰٪ کربن منوکسید در خون می‌تواند به مرگ منجر شود. چون جذبش از اکسیژن توسط گلبول‌های خون بیشتر هست، عامل: تحت تأثیر مستقیم دود خودروها بودن) , سطح قند خون بالا و یا پایین طولانی مدت در افراد مبتلا به دیابت و سرطان در ساقه مغز که می‌تواند در نهایت منجر به کما یا مرگ شخص شود)
* '''Temporal Lobe _''' قسمت صورتی پررنگ در تصویر بالا. در این قسمت یک تصویر ذهنی کامل از اون چیزی که می‌بینیم و می‌شنویم و احساس می‌کنیم در ذهن درست می‌شود. زبان و شنوایی و بویایی در این قسمت مغز مورد پردازش قرار می‌گیرند. این قسمت از مغز همچنین به تشخیص اشیا، جهت حرکت، چهره‌های آشنا (ویژه) , بخاطر آوردن حقایق جهان و اطلاعات یا دانش عمومی، همراه کردن حافظه و احساسات و همچنین این قسمت نقش مهمی را درگرفتن تصمیمات اخلاقی/احساسی بر عهده داره. لوب Temporal بازیابی معنی کلمات را از حافظه انجام می‌دهد و سپس کلمات رو با مفاهیم هماهنگ می‌کند تا شخص بتواند ایدهای خود را بیان کند. همین‌طور زمانی که بچه‌ها یادمی‌گیرند تا بخوانند این بخش مغز کلمات رو با ترجمه اشکال کلمه به صدا ذخیره می‌کند؛ بنابراین این بخش می‌تواند کلمات را تشخیص بدهد. اتصال Temporal-parietal با دیدن ارواح و یا پیش درآمد و تجربه خروج از بدن در ارتباط است (عوارض در صورت آسیب: عفونت یا بیماری مانند آلزایمر می‌توانید باعث آسیب لوب Temporal شود که سبب تقلا آنچه که یک فرد می‌شنود، می‌بیند و درک می‌کند می‌شود. ممکن است حافظه و اشکال کلمات و صداها در افراد آسیب دیده مختل شود). همچنین فرایند خواب دیدن عموماً در حین فعال بودن کل cerebral cortex مغز اتفاق می‌افتد.
* '''Parietal_''' قسمت آبی در تصویر بالا. حواس لمسی، درجه حرارت، فشار، و درد. Parietal به شخص برای رسیدن به درک و دانستن موقعیت چیزهای اطرافش کمک می‌کند. Parietal وقتی که شخصی را لمس می‌کنید واکنش نشان می‌دهد. لوب Parietal می‌توانید زمان و نقطهٔ صدمه را دقیقاً شناسایی کند. این قسمت باعث بخاطر آوردن شخص از نحوه چگونگی استفاده از ابزارها و همچنین حافظه شخص از بدن و واکنش‌های آشنا در برابر کنش‌های آشنای محیط بدون فکر کردن دربارهٔ آنها مانند بیسبال، شنا کردن و . . . لوب Parietal بین پیشانی و occipital نهفته در مغز بالا وسط در نزدیکی [[:en:Cerebrum|cerebrum]] نیمکره غالب در خواندن و نوشتن گفتار و محاسبه، اقدامات پیچیده. همچنین نقش مهمی در ادراک و تصویر ذهنی از بدن بر عهده دارد (آسیب: یک فرد با یک سکته مغزی ضایعه مغزی آسیب‌های مغزی و یا آسیب‌های دژنراتیو در این منطقه ممکن است قادر به تشخیص چهره، چپ از راست، رسم، کلمات یا اعداد، صحبت به طور معمول و یا اقامت متمرکز نباشد. آنها ممکن است فاصله و موقعیت شی را تشخیص ندهند، آنها ممکن است قضاوت خودشان را در برخی امور ساده از دست بدهند و مثلاً از یک اتاق به دیگری در خانه خود اشتاه کنند و احساس خود از درد، لمس یا درجه حرارت را از دست بدهند، آنها ممکن است چیزها را اشتباه گرفته و قادر به لباس پوشیدن و یا انجام کارهای ساده نباشند)
* '''Occipital_''' قسمت سبز در تصویر بالا " یا همون پس سر " نورون‌های این قسمت بر روی بینایی چشم کار می‌کنند و با کار کردن همراه دیگر بخش‌های مغز فعالیت‌هایی مثل پردازش تصاویر ارسال شده از چشم و تفسیر اشکال مختلف و رنگ‌ها، عمق تصاویر، زاویه‌هایی که ما در حال دیدنشان هستیم را انجام می‌دهند (آسیب یا عفونت یا نرسیدن اکسیژن و موارد دیگر به این قسمت ممکن است دید و درک بصری شخص را تحت تأثیر قرار دهد و شخص آسیب دیده به سختی قادر به خواندن متون و تشخیص رنگ‌ها و محل اشیای نزدیک، تفسیر ترسیماتی مانند (نقاشی) و تشخیص کلمات در متن است. گاهی هم ممکن هست شخص نتواند تغییر اشیا از یک مکان به مکان دیگر را در اطرافش ببیند. همچنین ممکن است شخص دچار انحراف دید و توهم بصری شود. همچنین آسیب دیدگی شدید به این بخش کوری را به همراه خواهد داشت / جراحات مغزی، آسیب و یا نوشتن متقابل " cross-writing " در محل اتصالی که در آن parietal و occipital اتصال جداری پیدا می‌کنند ممکن است باعث حس متقارن "synesthesia"و مخلوطی حواس شود. برای مثال اون افراد هنگام شنیدن موسیقی یا خواندن اعداد رنگ‌هایی را می‌بینند. برای آنها نت‌های مختلف موسیقی ممکن است واقعاً تولید یک سمفونی رنگ نماید. زمانی که این گونه افراد می‌نویسند ممکن است عدد ۵ به رنگ آبی و عدد ۶ به رنگ سبز مشاهده شود) [[پرونده:Neuron Cell Body.png|thumb|443x443px|جسم سلولی نورون ([[:en:Soma_Soma (biology)|Soma]])]]
شباهت نورون‌ها با دیگر سلول‌های بدن.[https://faculty.washington.edu/chudler/what.html]
# نورون‌ها توسط یک غشاء احاطه شده است.
خط ۵۶:
# نورون‌ها ایجاد ارتباط خاصی که سیناپس نام دارد می‌کنند و تولید مواد شیمیایی خاصی به نام neurotransmitters " انتقال دهنده‌های عصبی " که در محل سیناپس ها برای انتقال پیام ها منتشر می‌شوند.
[[پرونده:1209 Glial Cells of the CNS-02.jpg|thumb|387x387px|سلول‌های [[:en:Neuroglia|<u>Glial</u>]]]]
memory یا حافظه در مغز به صورت رمزگذاری شده و در ارتباطات سیناپس بین نورون ها، در سرتاسر شبکه عصبی ذخیره‌سازی می‌شوند و محل خاصی به تنهایی در مغز وظیفه ذخیره‌سازی را بر عهده ندارد [http://www.human-memory.net/processes_storage.html] تحقیقات دانشمندان در آمریکا بر روی حافظه راه کارهایی را برای پاک کردن و نوشتن مجدد memory خاصی در مغز را تا حدودی زیادی ممکن کرده [http://www.zoomit.ir/2016/2/28/127545/scientists-figured-out-how-to-to-erase-your-painful-memories/]
همچنین با این روش می شه برای افراد تازه‌کار مهارت‌های افراد با تجربه بالا را در مغزشان با استفاده از (جریان‌های پایین الکتریکی) آپلود کرد و این افراد در طول آزمایش کنترل هواپیما در طول مدت خیلی کوتاهی عملکردشان به خوبی افرادی که سال‌ها در خلبانی تجربه داشتند شده است [http://www.sciencealert.com/sorry-guys-scientists-haven-t-invented-a-matrix-style-device-that-instantly-uploads-data-to-your-brain]
 
خط ۷۷:
 
=== تحقیقات اخیر ===
'''در تاریخ Dec 17, 2009''' ابر کامپیوتر (supercomputer) شرکت [http://www.popularmechanics.com/technology/engineering/extreme-machines/4337190 IBM] در آمریکا توانست در حدود billion 1 (میلیارد) نورون را با حدود 10 trillion سیناپس مصنوعی شبیه‌سازی کند که این نشان دهنده این واقعیت هست که نورون‌های مصنوعی به سیستم‌های قدرتمندی برای اجرا نیاز دارند و برای شبیه‌سازی مغز انسان احتمالاً به [[رایانه کوانتومی|کامپیوتر کوانتومی]] نیاز خواهد بود. همچنین با دانستن این موضوع که مورچه ۲۵۰٬۰۰۰ نورون و زنبور در حدود ۹۶۰٬۰۰۰ و گربه ۷۶۰٬۰۰۰٬۰۰۰ نورون و در حدود 10<sup>13</sup> سیناپس دارد می‌شود نتیجه گرفت که با supercomputerهای کنونی تا حدودی بشه این موجودات را شبیه‌سازی کرد. ([[:en:List_of_animals_by_number_of_neuronsList of animals by number of neurons|لیست موجودات مختلف بر اساس تعداد نورون‌ها و سیناپس‌ها]]) البته باید مد نظر داشت که برخی از موجودات از swarm Intelligence یا [[هوش ازدحامی|هوش جمعی]] استفاده می‌کنند و شبیه‌سازی تکی ان‌ها کافی نخواهد بود)
 
'''در تاریخ Dec 9, 2014''' شرکت IBM از تراشه SyNAPSE خود رونمایی کرد. این چیپ که با سرمایه‌گذاری DARPA (سازمان پروژه‌های تحقیقاتی پیشرفتهٔ دفاعی ایالت متحده) به بهره‌برداری رسیده، به گونه‌ای طراحی شده که فعالیت‌های مغز انسان را شبیه‌سازی کند و به طور کلی از چارچوب منطق بولین و باینری خارج شود. این تراشه متشکل از ۱ میلیون نورون مجازی است که با استفاده از ۲۵۶ میلیون سیناپس مجازی به یکدیگر متصل شده‌اند. سیناپس بزرگ‌ترین تراشه‌ای است که شرکت IBM تاکنون تولید کرده است، چراکه در آن ۵٫۴ میلیارد ترانزیستور استفاده شده است. همچنین مجموعهٔ ترانزیستورهای مورد استفاده متشکل از ۴٫۰۹۶ هستهٔ neuroSynaptic است که روی تراشه قرار گرفته‌اند. مصرف این تراشه تنها ۷۰ میلی‌وات mW است که در مقایسه با تراشه‌های کنونی بسیار کمتر است. [[:en:List of CPU power dissipation figures]] از نظر مقیاس، تراشهٔ سیناپس برابر با مغز یک زنبور عسل است و تعداد نئورون‌ها و سیناپس‌های مورد استفاده با آن برابری می‌کند، با این وجود این تراشه بسیار ضعیف‌تر از مغز انسان‌ها است. مغز هر انسان از حدود ۸۶ میلیارد نورون و ۱۰۰ تریلیوین سیناپس تشکیل شده است. البته تیم توسعهٔ SyNAPSE نشان داده که می‌توان با اتصال تراشه‌های سیناپس به یکدیگر، تراشهٔ بزرگ‌تر و قوی‌تری ساخت.
خط ۸۳:
در حال حاضر IBM موفق شده یک بورد قابل برنامه‌ریزی و کارآمد با استفاده از ۱۶ عدد چیپ SyNAPSE ایجاد نماید که همگی در هماهنگی کامل با یکدیگر فعالیت می‌کنند. این بورد نمایانگر قدرت ۱۶ میلیون نورون است که بنا بر گفتهٔ محققان این پروژه، در پردازش سنتی با استفاده از تعداد زیادی رک (مکان قرارگیری چندین کامپیوتر پر قدرت بزرگ) و مجموعه‌های عظیم کامپیوتری قابل دستیابی بود؛ و با وجود مجتمع نمودن ۱۶ چیپ در یک سیستم، باز هم با مصرف نیروی به شدت پایینی روبرو هستیم که در نتیجهٔ آن حرارت بسیار پایین‌تری نیز تولید می‌شود. در حقیقت چیپ SyNAPSE جدید آنچنان انقلابی بوده و دنیای پردازش را از نگرش دیگری نمایان می‌سازد که IBM مجبور شده برای همراهی با توسعهٔ آن به ایجاد یک زبان برنامه‌نویسی جدید بپردازد و یک برنامهٔ آموزشی گستردهٔ اطلاع‌رسانی تحت نام دانشگاه SyNAPSE راه‌اندازی کند.[http://www.zoomit.ir/2014/8/10/13168/ibm-synapse-supercomputing-chip/][https://www.theguardian.com/technology/2014/dec/09/synapse-ibm-neural-computing-chip]
 
'''در تاریخ March 16, 2016''' شرکت Google بخش [[:en:Google_DeepMindGoogle DeepMind|DeepMind]] توانستند توسط هوش مصنوعی خود قهرمان جهان را در بازی GO (شطرنج چینی که قدمتی بیش از ۲۵۰۰ سال دارد) با نتیجه ۴ به ۱ شکست دهند که این دستاورد بزرگی برای هوش مصنوعی بود. گوگل در این هوش مصنوعی از تکنولوژی [[یادگیری عمیق|Deep Learning]] و [[حافظه کوتاه‌مدت|short-term memory]] بهره برده است و این سیستم به نوعی مشابه [[:en:Turing_MachineTuring Machine|Turing Machine]] هست اما به صورت end-to-end دارای تفاوت‌های قابل تشخیص می‌باشد و این تکنولوژی‌ها به اون اجازه داده است که با [[:en:Gradient_descentGradient descent|gradient descent]] به صورت مؤثری قابل تعلیم باشد. در DeepMind محققان گوگل مجموعه‌ای از حرکت‌های بهترین بازکنان گو را که شامل بیش از ۳۰ میلیون حرکت است، جمع‌آوری کرده و سیستم هوش مصنوعی مبتنی بر یادگیری عمیق خود را با استفاده از این حرکات آموزش داده‌اند تا از این طریق آلفاگو قادر باشد به تنهایی و براساس تصمیمات خود به بازی بپردازد. همچنین دانشمندان برای بهبود هر چه بیشتر این سیستم راه‌حل تقابل هوش مصنوعی توسعه یافته با خودش را در پیش گرفتند؛ با استفاده از این روش، دانشمندان موفق شدند تا حرکات جدیدی را نیز ثبت کنند و با استفاده از این حرکات آموزش هوش مصنوعی را وارد مرحلهٔ جدیدتری نمایند. چنین سیستمی قادر شده تا بهترین بازیکن اروپا و جهان را شکست دهد. بزرگ‌ترین نتیجهٔ توسعهٔ آلفاگو، عدم توسعهٔ این سیستم با قوانین از پیش تعیین شده است. در عوض این سیستم از روش‌های مبتنی بر یادگیری ماشین و شبکه عصبی توسعه یافته و تکنیک‌های برد در بازی گو را به خوبی یادگرفته و حتی می‌تواند تکنیک‌های جدیدی را ایجاد و در بازی اعمال کند. کریس نیکولسون، مؤسس استارت آپ Skymind که در زمینهٔ تکنولوژی‌های یادگیری عمیق فعالیت می‌کند، در این خصوص این چنین اظهار نظر کرده است: " از سیستم‌های مبتنی بر شبکهٔ عصبی نظیر آلفاگو می‌توان در هر مشکل و مساله‌ای که تعیین استراتژی برای رسیدن به موفقیت اهمیت دارد، استفاده کرد. کاربردهای این فناوری می‌تواند از اقتصاد، علم یا جنگ گسترده باشد. "
 
اهمیت برد آلفاگو :در ابتدای سال ۲۰۱۴ میلادی، برنامهٔ هوش مصنوعی Coulom که Crazystone نام داشت موفق شد در برابر نوریموتو یودا، بازیکن قهار این رشتهٔ ورزشی پیروز شود؛ اما موضوعی که باید در این پیروزی اشاره کرد، انجام ۴ حرکت پی در پی ابتدایی در این رقابت توسط برنامهٔ هوش مصنوعی توسعه یافته بود که برتری بزرگی در بازی گو به شمار می‌رود. در آن زمان Coulom پیش‌بینی کرده بود که برای غلبه بر انسان، نیاز به ''یک بازهٔ زمانی یک دهه‌ای'' است تا ماشین‌ها بتوانند پیروز رقابت با انسان‌ها در بازی GO باشند. چالش اصلی در رقابت با بهترین بازیکن‌های گو، در طبیعت این بازی نهفته است. حتی بهترین ابررایانه‌های توسعه یافته نیز برای آنالیز و پیش‌بینی نتیجهٔ حرکت‌های قابل انجام از نظر قدرت پردازشی دچار تزلرل شده و نمی‌توانند قدرت پردازشی مورد نیاز را تأمین کنند. در واقع نیروی پردازشی این رایانه‌ها مناسب نبوده و در نتیجه زمان درازی را برای ارائهٔ نتیجهٔ قابل قبول مورد نیاز است. زمانی که ابررایانهٔ موسوم به Deep Blue که توسط IBM توسعه یافته بود، موفق شد تا در سال ۱۹۹۷، گری کاسپاروف، قهرمان شطرنج جهان را شکست دهد، بسیاری به قدرت این ابررایانه پی بردند؛ چراکه این ابررایانه با قدرت زیادی کاسپاروف را شکست داد. علت پیروزی قاطع این Deep Blue، قدرت بالای این ابررایانه در کنار قدرت تحلیل و نتیجه‌گیری از هر حرکت احتمالی ممکن در بازی بود که تقریباً هیچ انسانی توانایی انجام آن را ندارد. اما چنین پیش‌بینی‌هایی در بازی GO ممکن نیست. براساس اطلاعات ارائه شده در بازی شطرنج که در صفحه‌ای ۸ در ۸ انجام می‌شود، در هر دور، بصورت میانگین می‌توان ۳۵ حرکت را انجام داد، اما در بازی گو که بین دو نفر در تخته‌ای به بزرگی ۱۹ در ۱۹ خانه انجام می‌شود، در هر دور بصورت میانگین می‌توان بیش از ۲۵۰ حرکت انجام داد. هر یک از این ۲۵۰ حرکت احتمالی نیز در ادامه ۲۵۰ احتمال دیگر را در پی دارند؛ که می شه نتیجه گرفت که در بازی گو، به اندازه‌ای احتمال حرکات گسترده است که تعداد آن از اتم‌های موجود در جهان هستی نیز بیشتر است.
خط ۱۱۵:
 
== شبکه‌های عصبی در مقایسه با کامپیوترهای سنتی ==
[[پرونده:C.elegans-brain-network.jpg|thumb|329x329px|شبکه مغز کرم الگانس [[:en:Caenorhabditis_elegansCaenorhabditis elegans|Caenorhabditis elegans]] _ شبکه نورونی این کرم از [[:de:Datei:C.elegans-brain-network.jpg|302]] نورون و حدود ۷۰۰۰ اتصال سیناپس تشکیل شده است.]]
یک شبکه عصبی به طور کلی با یک کامپیوتر سنتی در موارد زیر تفاوت دارد:
# شبکه‌های عصبی دستورات را به صورت سری اجرا نکرده، شامل حافظه‌ای برای نگهداری داده و دستورالعمل نیستند.
خط ۱۷۷:
== انواع شبکه‌های عصبی مصنوعی ==
* Dynamic Neural Network
** [[:en:Feedforward_neural_networkFeedforward neural network|Feedforward neural network FNN]]
** [[:en:Recurrent_neural_networkRecurrent neural network|Recurrent neural network RNN]]
*** RNN تکنولوژی [[:en:Speech_recognitionSpeech recognition|speech recognition]] و [[:en:Handwriting_recognitionHandwriting recognition|handwriting recognition]] را ممکن کرد. انواع RNN
**** [[:en:Hopfield_networkHopfield network|Hopfield network]]
**** [[:en:Boltzmann_machineBoltzmann machine|Boltzmann machine]]
**** Simple recurrent networks
**** [[:en:Echo_state_networkEcho state network|Echo state network]]
**** [[:en:Long_short_term_memoryLong short term memory|Long short term memory network]]
**** Bi-directional RNN
**** Hierarchical RNN
**** [[:en:Stochastic_neural_networkStochastic neural network|Stochastic neural networks]]
** [[:en:Self-organizing_maporganizing map|Kohonen Self-Organizing Maps]]
** [[:en:Autoencoder|Autoencoder]]
** [[:en:Backpropagation|Backpropagation]]
** [[:en:Probabilistic_neural_networkProbabilistic neural network|probabilistic neural network PNN]]
** [[:en:Time_delay_neural_networkTime delay neural network|Time delay neural network TDNN]]
* Static Neural Network
** [[:en:Neocognitron|Neocognitron]]
** [[:en:Radial_basis_function_networkRadial basis function network|Radial basis function network RBF]]
** [[:en:Learning_vector_quantizationLearning vector quantization|Learning vector quantization]]
** [[:en:Perceptron|Perceptron]]
*** [[:en:ADALINE|Adaline model]]
*** [[:en:Convolutional_neural_networkConvolutional neural network|Convolutional neural network CNN]]
**** [[:en:DeepDream|Deep Dream Google]]
** [[:en:Modular_neural_networkModular neural network|Modular neural networks]]
*** [[:en:Committee_machineCommittee machine|Committee of machines COM]]
*** [[:en:Autoassociative_memoryAutoassociative memory|Associative neural network ASNN]]
* <span lang="en" dir="ltr">Memory Network</span>
** [[:en:Google_DeepMindGoogle DeepMind|Google / Deep Mind]]
** <span lang="en" dir="ltr">[https://github.com/facebook/MemNN facebook / MemNN]</span>
** [[:en:Holographic_associative_memoryHolographic associative memory|Holographic associative memory]]
** One-shot associative memory
** Neural Turing Machine
** [[:en:Adaptive_resonance_theoryAdaptive resonance theory|Adaptive resonance theory]]
** [[:en:Hierarchical_temporal_memoryHierarchical temporal memory|Hierarchical temporal memory]]
* Other types of networks
** [[:en:Instantaneously_trained_neural_networksInstantaneously trained neural networks|Instantaneously trained networks ITNN]]
** [[:en:Spiking_neural_networkSpiking neural network|Spiking neural networks SNN]]
*** Pulse Coded Neural Networks PCNN
** Cascading neural networks
** Neuro-fuzzy networks
** [[:de:Growing_Neural_GasGrowing Neural Gas|Growing Neural Gas GNG]]
** Compositional pattern-producing networks
** [[:en:Counterpropagation_networkCounterpropagation network|Counterpropagation network]]
** [[:de:Oszillierendes_neuronales_NetzwerkOszillierendes neuronales Netzwerk|Oscillating neural network]]
** Hybridization neural network
** [[:en:Physical_neural_networkPhysical neural network|Physical neural network]]
*** [[:en:Optical_neural_networkOptical neural network|Optical neural network]]
[[پرونده:Neurons uni bi multi pseudouni.svg|thumb|351x351px|تمایز Morphologische سلول‌های عصبی 1_[[:en:Unipolar_neuronUnipolar neuron|Unipolar neuron]] (نورون تک قطبی) 2_ [[:en:Bipolar_neuronBipolar neuron|Bipolar neuron]] (نورون دو قطبی) ۳_ نورون‌های چند قطبی (سیستم مغز) 4_ [[:en:Pseudounipolar_neuronPseudounipolar neuron|Pseudounipolar neuron]] ([[دستگاه عصبی پیرامونی|سیستم عصبی محیطی]])]]لیست کامل انواع شبکه‌های عصبی در [[:en:Types_of_artificial_neural_networksTypes of artificial neural networks|<u>''Types of artificial neural networks''</u>]]
 
== جستارهای وابسته ==
خط ۲۳۱:
* [[یاخته عصبی|نورون]] ([[:en:Neuron|Neuron]])
* [[پروژه بلو برین|پروژه Blue Brain]]
* [[علوم شناختی]] ([[:en:Cognitive_scienceCognitive science|Cognitive science]])
* [[بینایی رایانه‌ای|بینایی کامپیوتر]] (computer vision)
* [[یادگیری ماشینی|یادگیری ماشین]] (machine learning)
* [[هوش ازدحامی|هوش جمعی]] (swarm intelligence)
* سیستم‌های خودآگاه ([[:en:Artificial_consciousnessArtificial consciousness|Artificial consciousness]])
* [[واسط مغز و رایانه|رابط نورونی مستقیم]] (DNI [[:en:Brain–computer_interfaceBrain–computer interface|Direct neural interface]])
* [[:en:List_of_animals_by_number_of_neuronsList of animals by number of neurons|تعداد نورون‌ها در موجودات مختلف]]
* [[:en:DNA_computingDNA computing|DNA محاسباتی]]
* [[علوم اعصاب محاسباتی]]
* آ[[بارگذاری ذهن|پلود مغز]] ([[:en:Mind_uploadingMind uploading|Mind uploading]])
* [[خودآگاهی|خود آگاهی]]
 
خط ۲۴۷:
 
== نگارخانه ==
[[پرونده:Gjl-t(x).svg|thumb|384x384px|[[:en:Sigmoid_functionSigmoid function|تابع Sigmoid]] که عموماً به عنوان activation function داخل نورون مصنوعی برخی از شبکه‌های عصبی ازش استفاده می شه]]
[[پرونده:Visible Human head slice.jpg|thumb|192x192px|در این تصویر [[:en:Cerebral_cortexCerebral cortex|cerebral cortex]] و [[:en:White_matterWhite matter|white matter]] رو می تونید مشاهده کنید (۱۹٪ از نورون‌های شبکه عصبی در غشای مغزی یا همون cerebral cortex قرار گرفته]]
[[پرونده:Complete neuron cell diagram en.svg|thumb|638x638px|ساختار نورون در شبکه عصبی مغز|هیچ]]
[[پرونده:Neuronal-Networks-Feedback.png|thumb|انواع مختلف feedback در شبکه RNN که در اون W_D ابی بازخورد مستقیم و w_i سبز بازخورد غیر مستقیم و w_l رنگ قرمز بازخورد جانبی هست. [[:de:Rekurrentes neuronales Netz]]]]
خط ۲۵۷:
* [[:شبکه عصبی مصنوعی]]
* [http://mathworks.ir/matlab-learning/48-neuralnetworks آموزش شبکه عصبی با متلب]
* [[:en:List_of_machine_learning_conceptsList of machine learning concepts|List of machine learning concepts]]
* [https://www.facebook.com/FBAIResearch/posts/362517620591864 Facebook AI Research] ([[شبکه ی حافظه]] یا Memory Networks منبع ←) [http://www.theinquirer.net/inquirer/feature/2434242/facebook-s-ai-tech-mimics-how-humans-learn]
* [[:en:Google_DeepMindGoogle DeepMind|Google/Deep Mind]] ([[گوگل دیپ مایند]] ←شبکه‌های عصبی [[یادگیری عمیق|deep learning]] با [[حافظه کوتاه‌مدت|memory کوتاه مدت]])[https://deepmind.com/index.html]
* [[مغز انسان]] پراکندگی درصدی نورون‌ها در مغز
* برخی از کتاب‌ها در این زمینه:
خط ۲۶۶:
* Static And Dynamic Neural Networks - From Fundamental to Advanced Theory pdf
{{علوم اعصاب}}
 
[[رده:شبکه‌های عصبی]]
[[رده:دستگاه عصبی]]