تفاوت میان نسخه‌های «آشنایی با نسبیت عام»

سیاه‌چاله نامیست که به دسته‌ای از پاسخ‌های معادلات اینشتین داده‌شده‌است. از نظر تاریخی، سیاه‌چاله‌ها ابتدا در جریان تلاش برای یافتن پاسخ معادلات اینشتین پیش‌بینی شدند. هنگامی‌که جرم در یک ناحیهٔ به اندازهٔ کافی فشرده از فضا متمرکز شود، نسبیت عام شکل‌گیری یک سیاه‌چاله را پیش‌بینی می‌کند. در صورت ورود هرچیز حتی نور به یک فاصله معین از (مرکز) یک سیاه‌چاله، امکان فرار از آن وجود ندارد. این فاصله [[افق رویداد]] نامیده شده‌است.<ref name="astro.umd.edu">{{یادکرد وب |نویسنده = |نشانی=http://www.astro.umd.edu/~miller/teaching/questions/blackholes.html |عنوان=Questions and Answers about Black Holes | ناشر = |تاریخ = |تاریخ بازبینی=August 4 2013|پیوند بایگانی= http://www.webcitation.org/6IbcKs2gt|تاریخ بایگانی=August 4 2013}}</ref>
 
برخی از انواعِ سیاه‌چاله‌ها، مرحلهٔ پایانیِ [[تکامل ستارگان|تحول ستارگان]] پرجرم هستند. پس از تبدیل شدن همۀ [[هیدروژن]] ستاره به [[هلیوم]] و بعد به عناصر سنگین‌تر بر اثر فرایند [[گداخت هسته‌ای]] درون ستاره، در صورتی که جرم ستاره بیش از ۱۰ تا ۲۵ برابر جرم [[خورشید]] باشد
برخی از انواعِ سیاه‌چاله‌ها، مرحلهٔ پایانیِ [[تکامل ستارگان|تحول ستارگان]] پرجرم هستند. پس از تبدیل شدن همۀ [[هیدروژن]] ستاره به [[هلیوم]] و بعد به عناصر سنگین‌تر بر اثر فرایند [[گداخت هسته‌ای]] درون ستاره، در صورتی که جرم ستاره بیش از ۱۰ تا ۲۵ برابر جرم [[خورشید]] باشد<ref>{{پک|Maeder|Schilde|1985|ف=The initial mass limit for neutron star and black hole formation|ک=Astronomy and Astrophysics|زبان=en}}</ref>، ستاره به درون خود فرو می‌ریزد و نیروهای دافعه بین ذرات زیراتمی نیز نمی‌توانند این رمبش را متوقف کنند. در پایان، در صورتی که جرم ستاره نوترونی حاصل بیش از ۲ تا ۳ برابر جرم خورشید باشد باقی‌مانده ستاره به یک سیاه‌چاله تبدیل خواهد شد. جرم سیاه‌چاله‌هایی که از این طریق تشکیل می‌شوند بین پنج تا چند ده برابر جرم خورشید است. از طرفی، راه دیگری نیز برای شکل‌گیری سیاه‌چاله‌های بسیار پرجرم‌تر وجود دارد. این سیاه‌چاله‌ها که [[سیاه‌چاله کلان‌جرم|سیاه‌چاله‌های کلان‌جرم]] نامیده شده‌اند، از رمبش گرانشی یک خوشۀ ستاره‌ای بسیار بزرگ ایجاد می‌شوند. این سیاه‌چاله‌ها می‌توانند جرمی از مرتبهٔ [[میلیون|میلیون‌ها]] یا [[۱۰۰۰۰۰۰۰۰۰ (عدد)|بیلیون‌ها]] برابر خورشید داشته باشند. گمان می‌رود که که در مرکز هر کهکشان، یک سیاه‌چاله از این نوع موجود باشد. برای مثال سیاه‌چاله قرار گرفته در مرکز [[کهکشان راه شیری]] دارای جرمی در حدود ۳۰۰ میلیون برابر جرم خورشید است. این سیاه‌چاله‌ها نقشی کلیدی در مدل‌های فعلی شکل‌گیری کهکشان‌ها در میلیاردها سال گذشته ایفا می‌کنند.<ref>برای مشاهدهٔ تاریخچه‌ای از فیزیک سیاه‌چاله‌ها از ابتدا تا کنون، نوشتار بسیار خواندنی {{Harvnb|Thorne|1994}}، به خصوص قسمت پیش‌گفتار و فصل ۴ را ببینید. برای بحث به‌روزی از نقش سیاه‌چاله‌ها در شکل‌گیری ساختار (کهکشان‌ها)، {{Harvnb|Springel|2005}} را ببینید. خلاصهٔ مختصری را می‌توان در مقالهٔ {{Harvnb|Gnedin|2005}} یافت.</ref><ref>{{یادکرد وب |نویسنده = |نشانی=http://superstringtheory.com/blackh/blackh1a.html |عنوان=Gravitational Collapse | ناشر = |تاریخ = |تاریخ بازبینی=August 4 2013 |پیوند بایگانی=http://www.webcitation.org/6Ibe1esjw |تاریخ بایگانی=August 4 2013}}</ref>
<ref>{{پک|Schild|Maeder|1985|ف=The initial mass limit for neutron star and black hole formation|زبان=en}}</ref>
برخی از انواعِ سیاه‌چاله‌ها، مرحلهٔ پایانیِ [[تکامل ستارگان|تحول ستارگان]] پرجرم هستند. پس از تبدیل شدن همۀ [[هیدروژن]] ستاره به [[هلیوم]] و بعد به عناصر سنگین‌تر بر اثر فرایند [[گداخت هسته‌ای]] درون ستاره، در صورتی که جرم ستاره بیش از ۱۰ تا ۲۵ برابر جرم [[خورشید]] باشد<ref>{{پک|Maeder|Schilde|1985|ف=The initial mass limit for neutron star and black hole formation|ک=Astronomy and Astrophysics|زبان=en}}</ref>، ستاره به درون خود فرو می‌ریزد و نیروهای دافعه بین ذرات زیراتمی نیز نمی‌توانند این رمبش را متوقف کنند. در پایان، در صورتی که جرم ستاره نوترونی حاصل بیش از ۲ تا ۳ برابر جرم خورشید باشد باقی‌مانده ستاره به یک سیاه‌چاله تبدیل خواهد شد. جرم سیاه‌چاله‌هایی که از این طریق تشکیل می‌شوند بین پنج تا چند ده برابر جرم خورشید است. از طرفی، راه دیگری نیز برای شکل‌گیری سیاه‌چاله‌های بسیار پرجرم‌تر وجود دارد. این سیاه‌چاله‌ها که [[سیاه‌چاله کلان‌جرم|سیاه‌چاله‌های کلان‌جرم]] نامیده شده‌اند، از رمبش گرانشی یک خوشۀ ستاره‌ای بسیار بزرگ ایجاد می‌شوند. این سیاه‌چاله‌ها می‌توانند جرمی از مرتبهٔ [[میلیون|میلیون‌ها]] یا [[۱۰۰۰۰۰۰۰۰۰ (عدد)|بیلیون‌ها]] برابر خورشید داشته باشند. گمان می‌رود که که در مرکز هر کهکشان، یک سیاه‌چاله از این نوع موجود باشد. برای مثال سیاه‌چاله قرار گرفته در مرکز [[کهکشان راه شیری]] دارای جرمی در حدود ۳۰۰ میلیون برابر جرم خورشید است. این سیاه‌چاله‌ها نقشی کلیدی در مدل‌های فعلی شکل‌گیری کهکشان‌ها در میلیاردها سال گذشته ایفا می‌کنند.<ref>برای مشاهدهٔ تاریخچه‌ای از فیزیک سیاه‌چاله‌ها از ابتدا تا کنون، نوشتار بسیار خواندنی {{Harvnb|Thorne|1994}}، به خصوص قسمت پیش‌گفتار و فصل ۴ را ببینید. برای بحث به‌روزی از نقش سیاه‌چاله‌ها در شکل‌گیری ساختار (کهکشان‌ها)، {{Harvnb|Springel|2005}} را ببینید. خلاصهٔ مختصری را می‌توان در مقالهٔ {{Harvnb|Gnedin|2005}} یافت.</ref><ref>{{یادکرد وب |نویسنده = |نشانی=http://superstringtheory.com/blackh/blackh1a.html |عنوان=Gravitational Collapse | ناشر = |تاریخ = |تاریخ بازبینی=August 4 2013 |پیوند بایگانی=http://www.webcitation.org/6Ibe1esjw |تاریخ بایگانی=August 4 2013}}</ref>
 
سقوط ماده در یک سیاه‌چاله، فرایندی است که بازده گسیل انرژی به صورت تابش در آن بسیار بالاست. یک توده گاز در حال سقوط در یک سیاه‌چاله از فاصله دور، حدود ۱۰ درصد از جرم-انرژی خود را به صورت تابش گسیل می‌کند. این عدد حدود ۱۰ تا ۲۰ برابر بیشتر از نسبت انرژی آزاد شده بر واحد جرم برای فرایند گداخت هسته‌ای است.<ref name="astro.umd.edu"/> سقوط ماده در سیاه‌چاله‌ها فرایندی است که مسئول بسیاری از پدیده‌های نجومی تلقی می‌شود. مثال‌های مهم و بااهمیت در نظر ستاره‌شناسان عبارتند از [[اختروش|اختروش‌ها]] و دیگر انواع [[هسته کهکشانی فعال]]. در شرایط خاصی، مادهٔ سقوط‌کننده و تجمع‌کننده در اطراف سیاه‌چاله می‌تواند به ایجاد [[جت نسبیتی|جت]] بینجامد، که در آن، شعاع‌های ماده با سرعت‌هایی نزدیک به [[سرعت نور]] به فضای اطراف پرتاب می‌شوند.<ref>فصل ۸ {{Harvnb|Sparke|Gallagher|2007}} و صفحات ۵۲ تا ۵۷ از {{Harvnb|Disney|1998}} را ببینید. بحث جامع دیگری که ریاضیات چندانی هم ندارد، در {{Harvnb|Fabian|1999}} آمده‌است.</ref>