تفاوت میان نسخه‌های «ویژگی‌های فلزات، شبه‌فلزات و نافلزات»

بدون خلاصه ویرایش
 
=== متالوئید (شبه فلزات) ===
[[پرونده:Tellurium2.jpg|جایگزین=A shiny silver-white medallion with a striated surface, irregular around the outside, with a square spiral-like pattern in the middle.|راست|بندانگشتی|[[تلوریم]]، که توسط [[دمیتری مندلیف|دیمیتری مندلیف]] به عنوان تبدیل بین فلزات و غیر فلزات توصیف شده‌است<ref>[[PropertiesAt ofstandard metalspressure and temperature, metalloidsfor andthe nonmetals#Mendeléeff1897a|Mendeléeffelements 1897،in their most thermodynamically stable forms, p.unless &nbsp;otherwise 274]]noted</ref>]]
شبه فلزات معمولاً جامد شکننده هستند.[۸] شبه فلزات به‌طور معمول در حال اشتراک گذاری الکترون‌ها با مواد دیگر هستند و واکنش پذیری مطلوبی دارا هستند.
 
 
در هر مقوله، عناصر می‌توانند با یک یا دو ویژگی بسیار متفاوت از هنجار مورد انتظاریافت شوند، یا این که در غیر این صورت دارای ویژگی به میزان قابل توجه باشند.
 
<br />
{| cellspacing="0" cellpadding="0" style="font-size:90%; text-align:top; vertical-align:top; padding:0.25em; border:1px solid #ddd; width:100%;"
! colspan="4" style="background: {{element color|1=table header}};" |{{navbar-header|<big>Physical and chemical properties</big>{{#tag:ref|At standard pressure and temperature, for the elements in their most thermodynamically stable forms, unless otherwise noted|group=n}}|Template:Metals-metalloids-nonmetals: compare, details|mini=y}}
|-
! width="16%" style="border-bottom:1px dotted gray;" |
! width="28%" style="border-bottom:1px dotted gray;" |<big>Metals</big><ref name="col24">[[ویژگی‌های فلزات، شبه‌فلزات و نافلزات#Kneen1972|Kneen, Rogers & Simpson, 1972, p.&nbsp;263]]. Columns 2&nbsp;(metals) and 4&nbsp;(nonmetals) are sourced from this reference unless otherwise indicated.</ref>
! width="28%" style="border-bottom:1px dotted gray;" |<big>Metalloids</big>
! width="28%" style="border-bottom:1px dotted gray;" |<big>Nonmetals</big><ref name="col24" />
|- id="Compare1a"
| colspan="3" style="border-top:1px solid black; border-bottom:1px solid black;" |'''Form and structure'''
| style="border-top:1px solid black; border-bottom:1px solid black; text-align:right;" |
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |Colour
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|nearly all are shiny and grey-white|[[copper|Cu]], [[caesium|Cs]], [[gold|Au]]: shiny and golden<ref>[[#Russell2005|Russell & Lee 2005, p.&nbsp;147]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}};ing-left:3px;" |{{bulleted list|shiny and grey-white<ref name="Rochow 1966, p.&nbsp;4"/>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|most are colourless or dull red, yellow, green, or intermediate shades<ref>[[#Pottenger1976|Pottenger & Bowes 1976, p.&nbsp;138]]</ref>|[[carbon|C]], [[phosphorus|P]], [[selenium|Se]], [[iodine|I]]: shiny and grey-white}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Reflectivity]]
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|intermediate to typically high<ref>[[#Askeland|Askeland, Fulay & Wright 2011, p.&nbsp;806]]</ref><ref>[[#Born|Born & Wolf 1999, p.&nbsp;746]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|intermediate<ref>[[#Lagrenaudie|Lagrenaudie 1953]]</ref><ref>[[#Rochow1966|Rochow 1966, pp.&nbsp;23, 25]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|zero or low (mostly)<ref>[[#Burakowski|Burakowski & Wierzchoń 1999, p.&nbsp;336]]</ref> to intermediate<ref>[[#Olechna|Olechna & Knox 1965, pp. A991‒92]]</ref>}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |Form
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|almost all solid|[[rubidium|Rb]], [[caesium|Cs]], [[francium|Fr]], [[gallium|Ga]], [[mercury (element)|Hg]]: liquid at/near [[Standard conditions for temperature and pressure|{{abbr|stp|standard temperature and pressure}}]]<ref>[[#Stoker2010|Stoker 2010, p.&nbsp;62]]</ref><ref>[[#Chang2002|Chang 2002, p.&nbsp;304]]. Chang speculates that the melting point of francium would be about 23&nbsp;°C.</ref>{{#tag:ref|[[Copernicium]] is reported to be the only metal known to be a gas at room temperature.<ref>[[#NS1975|New Scientist 1975]]; [[#Soverna2004|Soverna 2004]]; [[#Eichler2007|Eichler, Aksenov & Belozeroz et al. 2007]]; [[#Austen2012|Austen 2012]]</ref>|group=n}}}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|all solid<ref name="Rochow 1966, p.&nbsp;4">[[#Rochow1966|Rochow 1966, p.&nbsp;4]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|most are gases<ref>[[#Hunt2000|Hunt 2000, p.&nbsp;256]]</ref>|[[carbon|C]], [[phosphorus|P]], [[sulfur|S]], [[selenium|Se]], [[iodine|I]]: solid; [[bromine|Br]]: liquid}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Density]]
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|generally high, with some exceptions such as the [[alkali metal]]s<ref>[[#Sisler1973|Sisler 1973, p.&nbsp;89]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|lower than nearby [[post-transition metal|metal]]s but higher than nearby [[nonmetal]]s<ref name=herold>[[#Hérold2006|Hérold 2006, pp.&nbsp;149–150]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|often low}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |Deformability (as a solid)
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|most are [[Ductility|ductile]] and malleable|some are brittle ([[chromium|Cr]], [[manganese|Mn]], [[gallium|Ga]], [[ruthenium|Ru]], [[tungsten|W]], [[osmium|Os]], [[bismuth|Bi]])<ref>[[#Russell2005|Russell & Lee 2005]]</ref>{{#tag:ref|Whether polonium is ductile or brittle is unclear. It is predicted to be ductile based on its calculated [[Young's modulus#Relation among elastic constants|elastic constants]].<ref>[[#Legit|Legit, Friák & Šob 2010, p.&nbsp;214118-18]]</ref> It has a simple [[Cubic crystal system|cubic crystalline structure]]. Such a structure has few [[Slip (materials science)#slip systems|slip systems]] and "leads to very low ductility and hence low fracture resistance".<ref>[[#Halford|Manson & Halford 2006, pp.&nbsp;378, 410]]</ref>|group=n}}}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|[[brittleness|brittle]]<ref name=McQuarrie85>[[#McQuarrie1987|McQuarrie & Rock 1987, p.&nbsp;85]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|brittle, when solid|some ([[carbon|C]], [[phosphorus|P]], [[sulfur|S]], [[selenium|Se]]) have non-brittle forms{{#tag:ref|Carbon as exfoliated ([[Graphite#Expanded graphite|expanded) graphite]],<ref>[[#Chung|Chung 1987]]; [[#Godfrin|Godfrin & Lauter 1995]]</ref> and as metre-long [[carbon nanotube]] wire;<ref>[[#Cambridge|Cambridge Enterprise 2013]]</ref> phosphorus as white phosphorus (soft as wax, pliable and can be cut with a knife, at room temperature);<ref>[[#Faraday|Faraday 1853, p.&nbsp;42]]; [[#Holderness|Holderness & Berry 1979, p.&nbsp;255]]</ref> sulfur as plastic sulfur;<ref>[[#Partington|Partington 1944, p.&nbsp;405]]</ref> and selenium as selenium wires.<ref>[[#Regnault1853|Regnault 1853, p.&nbsp;208]]</ref>|group=n}}}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Poisson's ratio]]{{#tag:ref|For polycrystalline forms of the elements unless otherwise noted. Determining Poisson's ratio accurately is a difficult proposition and there could be considerable uncertainty in some reported values.<ref>[[#Christensen2012|Christensen 2012, p.&nbsp;14]]</ref>|group=n}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|low to high{{#tag:ref|Beryllium has the lowest known value (0.0476) amongst elemental metals; indium and thallium each have the highest known value (0.46). Around one third show a value ≥ 0.33.<ref>[[#Gschneidner1964|Gschneidner 1964, pp.&nbsp;292‒93]].</ref>|group=n}}}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|low to intermediate{{#tag:ref|Boron 0.13;<ref>[[#Qin2012|Qin et al. 2012, p.&nbsp;258]]</ref> silicon 0.22;<ref>[[#Hopcroft2010|Hopcroft, Nix & Kenny 2010, p.&nbsp;236]]</ref> germanium 0.278;<ref>[[#Greaves2011|Greaves et al. 2011, p.&nbsp;826]]</ref> amorphous arsenic 0.27;<ref>[[#Brassington1980|Brassington et al. 1980]]</ref> antimony 0.25;<ref>[[#Martienssen2005|Martienssen & Warlimont 2005, p.&nbsp;100]]</ref> tellurium ~0.2.<ref>[[#Witczak2000|Witczak 2000, p.&nbsp;823]]</ref>|group=n}}}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|low to intermediate{{#tag:ref|Graphitic carbon 0.25;<ref>[[#Marlowe1970|Marlowe 1970, p.&nbsp;6]];[[#Slyh1955|Slyh 1955, p.&nbsp;146]]</ref> [diamond 0.0718];<ref>[[#Klein1992|Klein & Cardinale 1992, pp.&nbsp;184‒85]]</ref> black phosphorus 0.30;<ref>[[#Appalakondaiah|Appalakondaiah et al. 2012, pp.&nbsp;035105‒6]]</ref> sulfur 0.287;<ref>[[#SundaraA|Sundara Rao 1950]]; [[#SundaraB|Sundara Rao 1954]]; [[#Ravindran1998|Ravindran 1998, pp.&nbsp;4897‒98]]</ref> amorphous selenium 0.32;<ref>[[#Lindegaard1966|Lindegaard & Dahle 1966, p.&nbsp;264]]</ref> amorphous iodine ~0.<ref>[[#Leith|Leith 1966, pp.&nbsp;38‒39]]</ref>|group=n}}}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Crystal structure|Crystalline structure]] at freezing point<ref>[[ویژگی‌های فلزات، شبه‌فلزات و نافلزات#Donohoe|Donohoe 1982]]; [[ویژگی‌های فلزات، شبه‌فلزات و نافلزات#Russell2005|Russell & Lee 2005]]</ref>
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|most are [[hexagonal crystal system|hexagonal]] or [[cubic crystal system|cubic]]|[[gallium|Ga]], [[uranium|U]], [[neptunium|Np]]: orthorhombic; [[indium|In]], [[tin|Sn]], [[protactinium|Pa]]: tetragonal; [[samarium|Sm]], [[mercury (element)|Hg]], [[bismuth|Bi]]: rhombohedral; [[plutonium|Pu]]: monoclinic}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|[[boron|B]], [[arsenic|As]], [[antimony|Sb]]: rhombohedral|[[silicon|Si]], [[germanium|Ge]]: cubic|[[tellurium|Te]]: hexagonal}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|[[hydrogen|H]], [[helium|He]], [[carbon|C]], [[nitrogen|N]], [[selenium|Se]]: hexagonal|[[oxygen|O]], [[fluorine|F]], [[neon|Ne]], [[phosphorus|P]], [[argon|Ar]], [[krypton|Kr]], [[xenon|Xe]], [[radon|Rn]]: cubic|[[sulfur|S]], [[chlorine|Cl]], [[bromine|Br]], [[iodine|I]]: orthorhombic}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Atomic packing factor|Packing]] & {{nowrap|[[coordination number]]}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|close-packed crystal structures<ref>[[#Gupta2005|Gupta et al. 2005, p.&nbsp;502]]</ref>|high coordination numbers}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|relatively open crystal structures<ref>[[#Walker|Walker, Newman & Enache 2013, p.&nbsp;25]]</ref>|medium coordination numbers<ref>[[#Wiberg2001|Wiberg 2001, p.&nbsp;143]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|open structures<ref>[[#Bbatsanov|Batsanov & Batsanov 2012, p.&nbsp;275]]</ref>|low coordination numbers}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Atomic radius]](calculated)<ref>[[ویژگی‌های فلزات، شبه‌فلزات و نافلزات#Clementi|Clementi & Raimondi 1963]]; [[ویژگی‌های فلزات، شبه‌فلزات و نافلزات#Clementi1967|Clementi, Raimondi & Reinhardt 1967]]</ref>
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|intermediate to very large|112–298 {{abbr|pm|picometer}}, average 187}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|small to intermediate: [[boron|B]], [[silicon|Si]], [[germanium|Ge]], [[arsenic|As]], [[antimony|Sb]], [[tellurium|Te]]|87–123&nbsp;pm, average 115.5&nbsp;pm}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|very small to intermediate|31–120 pm, average 76.4&nbsp;pm}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Allotropy|Allotropes]]<ref>[[ویژگی‌های فلزات، شبه‌فلزات و نافلزات#Addison|Addison 1964]]; [[ویژگی‌های فلزات، شبه‌فلزات و نافلزات#Donohoe|Donohoe 1982]]</ref>{{#tag:ref|At [[atmospheric pressure]], for elements with known structures|group=n}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|around half form allotropes|one ([[Tin|Sn]]) has a metalloid-like allotrope ([[tin pest|grey Sn]], which forms below 13.2&nbsp;°C<ref>[[#Vernon|Vernon 2013, p.&nbsp;1704]]</ref>)}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|all or nearly all form allotropes|some (e.g. [[Allotropes of boron#.CE.B1-rhombohedral boron|red B]], [[Arsenic#Physical characteristics|yellow As]]) are more nonmetallic in nature}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|some form allotropes|some (e.g. [[graphite|graphitic C]], [[Allotropes of phosphorus#Black phosphorus|black P]], [[selenium|grey Se]]) are more metalloidal or metallic in nature}}
|- id="Compare1b"
| colspan="4" style="border-top:1px solid black; border-bottom:1px solid black;" |'''Electron-related'''
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Block (periodic table)|Periodic table block]]
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|[[s-block|s]], [[p-block|p]], [[d-block|d]], [[f-block|f]]<ref>[[#Parish1977|Parish 1977, pp.&nbsp;34, 48, 112, 142, 156, 178]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|p<ref name=Emsley2001>[[#Emsley2001|Emsley 2001, p.&nbsp;12]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|s, p<ref name=Emsley2001 />}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |Outer ''s'' and ''p'' electrons
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|few in number (1–3)|except 0&nbsp;([[palladium|Pd]]); 4&nbsp;([[tin|Sn]], [[lead|Pb]], [[flerovium|Fl]]); 5&nbsp;([[bismuth|Bi]]); 6&nbsp;([[polonium|Po]])}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|medium number (3–7)}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|high number (4–8)|except 1&nbsp;([[hydrogen|H]]); 2&nbsp;([[helium|He]])}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Electronic band structure|Electron bands]]: ([[Valence band|valence]], [[Conduction band|conduction]])
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|nearly all have substantial band overlap|[[bismuth|Bi]]: has slight band overlap ([[semimetal]])}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|most have narrow band gap ([[semiconductor]]s)|[[arsenic|As]], [[antimony|Sb]] are semimetals}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|most have wide band gap ([[insulator (electricity)|insulator]]s)|[[carbon|C]] ([[graphite]]): a semimetal|[[phosphorus|P]] ([[phosphorus#Black phosphorus|black]]), [[selenium|Se]], [[iodine|I]]: semiconductors}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Electron]] behaviour
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|"free" electrons (facilitating electrical and thermal conductivity)}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|valence electrons less freely delocalized; considerable covalent bonding present<ref>[[#Russell1981|Russell 1981, p.&nbsp;628]]</ref>|23=have Goldhammer-Herzfeld criterion{{#tag:ref|The <span id="Gold"></span>''Goldhammer-[[Karl Herzfeld|Herzfeld]] criterion'' is a ratio that compares the force holding an individual atom's valence electrons in place with the forces, acting on the same electrons, arising from interactions between the atoms in the solid or liquid element. When the interatomic forces are greater than or equal to the atomic force, valence electron itinerancy is indicated. Metallic behaviour is then predicted.<ref>[[#Herzfeld1927|Herzfeld 1927]]; [[#Edwards2000|Edwards 2000, pp.&nbsp;100–103]]</ref> Otherwise nonmetallic behaviour is anticipated. The Goldhammer-Herzfeld criterion is based on classical arguments.<ref>[[#Edwards1999|Edwards 1999, p.&nbsp;416]]</ref> It nevertheless offers a relatively simple first order rationalization for the occurrence of metallic character amongst the elements.<ref name=edwards695>[[#Edwards1983|Edwards & Sienko 1983, p.&nbsp;695]]</ref>|group=n}} ratios straddling unity<ref name=edwards/><ref name=edwards2010>[[#Edwards2010|Edwards et al. 2010]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|no, few, or directionally confined "free" electrons (generally hampering electrical and thermal conductivity)}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Electrical conductivity]]
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|good to high{{#tag:ref|Metals have electrical conductivity values of from 6.9 × 10<sup>3</sup> S•cm<sup>−1</sup> for [[manganese]] to 6.3 × 10<sup>5</sup> for [[silver]].<ref>[[#Desai1984|Desai, James & Ho 1984, p.&nbsp;1160]]; [[#Matula1979|Matula 1979, p.&nbsp;1260]]</ref>|group=n}}}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|intermediate<ref>[[#Choppin1972|Choppin & Johnsen 1972, p.&nbsp;351]]</ref> to good{{#tag:ref|Metalloids have electrical conductivity values of from 1.5 × 10<sup>−6</sup> S•cm<sup>−1</sup> for boron to 3.9 × 10<sup>4</sup> for [[arsenic]].<ref>[[#Schaefer1968|Schaefer 1968, p.&nbsp;76]]; [[#Carapella1968|Carapella 1968, p.&nbsp;30]]</ref> If [[selenium]] is included as a metalloid the applicable conductivity range would start from ~10<sup>−9</sup> to 10<sup>−12</sup> S•cm<sup>−1</sup>.<ref>[[#Glazov1969|Glazov, Chizhevskaya & Glagoleva 1969 p.&nbsp;86]]</ref><ref name="ReferenceB">[[#Kozyrev1959|Kozyrev 1959, p.&nbsp;104]]</ref><ref name="Chizhikov 1968, p.&nbsp;25">[[#Chizhikov1968|Chizhikov & Shchastlivyi 1968, p.&nbsp;25]]</ref>|group=n}}}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|poor to good{{#tag:ref|Nonmetals have electrical conductivity values of from ~10<sup>−18</sup> S•cm<sup>−1</sup> for the elemental gases to 3 × 10<sup>4</sup> in graphite.<ref>[[#Bogoroditskii1967|Bogoroditskii & Pasynkov 1967, p.&nbsp;77]]; [[#Jenkins1976|Jenkins & Kawamura 1976, p.&nbsp;88]]</ref>|group=n}}}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |... as a liquid<ref name="Rao & Ganguly 1986">[[ویژگی‌های فلزات، شبه‌فلزات و نافلزات#Rao1986|Rao & Ganguly 1986]]</ref>
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|falls gradually as temperature rises{{#tag:ref|Mott and Davis<ref>[[#MottDavis|Mott & Davis 2012, p.&nbsp;177]]</ref> note however that 'liquid europium has a negative temperature coefficient of resistance' i.e. that conductivity increases with rising temperature|group=n}}}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|most behave like metals<ref name=edwards>[[#Edwards1983|Edwards & Sienko 1983, p.&nbsp;691]]</ref><ref>[[#Anita1998|Anita 1998]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|increases as temperature rises}}
|- id="Compare1c"
| colspan="4" style="border-top:1px solid black; border-bottom:1px solid black;" |'''Thermodynamics'''
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Thermal conductivity]]
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|medium to high<ref>[[#Cverna2002|Cverna 2002, p.1]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|mostly intermediate;<ref name=McQuarrie85/><ref>[[#Cordes1973|Cordes & Scaheffer 1973, p.&nbsp;79]]</ref> [[silicon|Si]] is high}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|almost negligible<ref>[[#Hill2000|Hill & Holman 2000, p.&nbsp;42]]</ref> to very high<ref>[[#Tilley2004|Tilley 2004, p.&nbsp;487]]</ref>}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Temperature coefficient#Temperature coefficient of electrical resistance|Temperature coefficient of resistance]]{{#tag:ref|At or near room temperature|group=n}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|nearly all positive ([[plutonium|Pu]] is negative)<ref>[[#Russell2005|Russell & Lee 2005, p.&nbsp;466]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|negative ([[boron|B]], [[silicon|Si]], [[germanium|Ge]], [[tellurium|Te]])<ref>[[#Orton2004|Orton 2004, pp.&nbsp;11–12]]</ref> or positive ([[arsenic|As]], [[antimony|Sb]])<ref>[[#Zhigal'skii2003|Zhigal'skii & Jones 2003, p.&nbsp;66]]: '[[Bismuth]], [[antimony]], [[arsenic]] and [[graphite]] are considered to be semimetals&nbsp;... In bulk semimetals&nbsp;... the resistivity will increase with temperature&nbsp;... to give a positive temperature coefficient of resistivity&nbsp;...'</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|nearly all negative ([[carbon|C]], as [[graphite]], is positive in the direction of its planes)<ref>[[#Jauncey1948|Jauncey 1948, p.&nbsp;500]]: 'Nonmetals mostly have negative temperature coefficients. For instance, carbon&nbsp;... [has a] resistance [that] decreases with a rise in temperature. However, recent experiments on very pure graphite, which is a form of carbon, have shown that pure carbon in this form behaves similarly to metals in regard to its resistance.'</ref><ref>[[#Reynolds1969|Reynolds 1969, pp.&nbsp;91–92]]</ref>}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |Melting point
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|mostly high}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|mostly high}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|mostly low}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |Melting behaviour
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|volume generally expands<ref name="ReferenceC">[[#Wilson1966|Wilson 1966, p.&nbsp;260]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|some contract, unlike (most)<ref>[[#Wittenberg1972|Wittenberg 1972, p.&nbsp;4526]]</ref> metals<ref>[[#Habashi2003|Habashi 2003, p.&nbsp;73]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|volume generally expands<ref name="ReferenceC"/>}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Enthalpy of fusion]]
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|low to high}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|intermediate to very high}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|very low to low (except [[carbon|C]]: very high)}}
|- id="Compare2a"
| colspan="4" style="border-top:1px solid black; border-bottom:1px solid black;" |'''Elemental chemistry'''
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |Overall behaviour
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|metallic}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|nonmetallic<ref>[[#Bailar1989|Bailar et al. 1989, p.&nbsp;742]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|nonmetallic}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Ion]] formation
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|tend to form [[cation]]s}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|some tendency to form [[anion]]s in water<ref name=Cox>[[#Cox2004|Cox 2004, p.&nbsp;27]]</ref>|solution chemistry dominated by formation and reactions of [[oxyanion]]s<ref name=Hiller225>[[#Hiller1960|Hiller & Herber 1960, inside front cover; p.&nbsp;225]]</ref><ref>[[#Beveridge1997|Beveridge et al. 1997, p.&nbsp;185]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|tend to form anions}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Chemical bond|Bonds]]
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|seldom form covalent compounds}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|form [[salt (chemistry)|salts]] as well as [[covalent bond|covalent]] compounds<ref name="Young RV 2000, p.&nbsp;849"/>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|form many covalent compounds}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Oxidation number]]
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|nearly always positive}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|positive or negative<ref>[[#Bailar1989|Bailar et al. 1989, p.&nbsp;417]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|positive or negative}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Ionization energy]]
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|relatively low}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|intermediate<ref>[[#Metcalfe1966|Metcalfe, Williams & Castka 1966, p.&nbsp;72]]</ref><ref>[[#Chang1994|Chang 1994, p.&nbsp;311]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|high}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Electronegativity]]
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|usually low}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|close to 2,<ref>[[#Pauling1988|Pauling 1988, p.&nbsp;183]]</ref> i.e., 1.9–2.2<ref name="Mann">[[#Mann2000|Mann et al. 2000, p.&nbsp;2783]]</ref>{{#tag:ref|Chedd<ref>[[#Chedd1969|Chedd 1969, pp.&nbsp;24–25]]</ref> defines metalloids as having electronegativity values of 1.8 to 2.2 ([[Allred-Rochow scale]]). He included [[boron]], [[silicon]], [[germanium]], [[arsenic]], [[antimony]], [[tellurium]], [[polonium]] and [[astatine]] in this category. In reviewing Chedd's work, Adler<ref>[[#Adler1969|Adler 1969, pp.&nbsp;18–19]]</ref> described this choice as arbitrary, given other elements have electronegativities in this range, including [[copper]], [[silver]], [[phosphorus]], [[mercury (element)|mercury]] and [[bismuth]]. He went on to suggest defining a metalloid simply as, 'a semiconductor or semimetal' and 'to have included the interesting materials bismuth and [[selenium]] in the book'.|group=n}}}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|high}}
|- id="Compare2b"
| colspan="4" style="border-top:1px solid black; border-bottom:1px solid black;" |'''Combined form chemistry'''
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |With metals
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|form [[alloy]]s}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|can form alloys<ref name="Young RV 2000, p.&nbsp;849">[[#Young2000|Young & Sessine 2000, p.&nbsp;849]]</ref><ref name="ReferenceA">[[#Hultgren1966|Hultgren 1966, p.&nbsp;648]]</ref><ref>[[#Bassett1966|Bassett et al. 1966, p.&nbsp;602]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|form [[ionic compounds|ionic]] or [[interstitial compound|interstitial]] compounds}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |With carbon
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|[[carbide]]s and [[organometallic compound]]s}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|same as metals}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|carbon-nonmetal (e.g. [[carbon dioxide|CO<sub>2</sub>]], [[carbon disulfide|CS<sub>2</sub>]]){{#tag:ref|Phosphorus is known to form a carbide in thin films.|group=n}} or [[organic compound|organic]] (e.g. [[methane|CH<sub>4</sub>]], [[sucrose|C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>)]] compounds}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |With hydrogen ([[hydride]]s)
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|ionic, with [[alkali metal|alkali]], [[alkaline earth metal|alkaline earth]] metals|metallic, with [[transition metal]]s|covalent, with [[post-transition metal]]s}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|covalent, volatile hydrides<ref>[[#Rochow1966|Rochow 1966, p.&nbsp;34]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|covalent, gaseous or liquid hydrides}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |With oxygen ([[oxide]]s)
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|nearly all solid ([[Manganese heptoxide|Mn<sub>2</sub>O<sub>7</sub>]] is a liquid)|very few glass formers<ref>[[#Martienssen2005|Martienssen & Warlimont 2005, p.&nbsp;257]]</ref>|lower oxides: [[ionic compound|ionic]] and [[base (chemistry)|basic]]|higher oxides: more [[covalent bond|covalent]], [[acid]]ic}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|solid|glass formers ([[boron|B]], [[silicon|Si]], [[germanium|Ge]], [[arsenic|As]], [[antimony|Sb]], [[tellurium|Te]])<ref>[[#Sidorov1960|Sidorov 1960]]</ref>|polymeric in structure;<ref>[[#Brasted1974|Brasted 1974, p.&nbsp;814]]</ref> tend to be [[amphoteric]] or weakly acidic<ref name="Rochow 1966, p.&nbsp;4"/><ref>[[#Atkins2006|Atkins 2006 et al., pp.&nbsp;8, 122–23]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|solid, liquid or gaseous|few glass formers ([[phosphorus|P]], [[sulfur|S]], [[selenium|Se]])<ref name=Rao22>[[#Rao2002|Rao 2002, p.&nbsp;22]]</ref>|covalent, acidic}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |With sulfur ([[sulfate]]s)
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|do form{{#tag:ref|See, for example, the sulfates of the [[transition metal]]s,<ref>[[#Wickleder2006|Wickleder, Pley & Büchner 2006]]; [[#Betke2011|Betke & Wickleder 2011]]</ref> the [[lanthanide]]s<ref>[[#Cotton1994|Cotton 1994, p.&nbsp;3606]]</ref> and the [[actinide]]s.<ref>[[#Keogh2005|Keogh 2005, p.&nbsp;16]]</ref>|group=n}}{{#tag:ref|Sulfates of osmium have not been characterized with any great degree of certainty.<ref>[[#Raub1980|Raub & Griffith 1980, p.&nbsp;167]]</ref>|group=n}}}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|most form{{#tag:ref|''Common metalloids:'' Boron is reported to be capable of forming an oxysulfate (BO)<sub>2</sub>SO<sub>4</sub>,<ref>[[#Nemodruk1969|Nemodruk & Karalova 1969, p.&nbsp;48]]</ref> a bisulfate B(HSO<sub>4</sub>)<sub>3</sub><ref>[[#Sneed1954|Sneed 1954, p.&nbsp;472]]; [[#Gillespie1959|Gillespie & Robinson 1959, p.&nbsp;407]]</ref> and a sulfate B<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>.<ref>[[#Zuckerman1991|Zuckerman & Hagen 1991, p.&nbsp;303]]</ref> The existence of a sulfate has been disputed.<ref>[[#Sanderson1967|Sanderson 1967, p.&nbsp;178]]</ref> In light of the existence of silicon phosphate, a silicon sulfate might also exist.<ref>[[#Iler1979|Iler 1979, p.&nbsp;190]]</ref> Germanium forms an unstable sulfate Ge(SO<sub>4</sub>)<sub>2</sub> (d 200 °C).<ref>[[#Sanderson1960|Sanderson 1960, p.&nbsp;162]]; [[#Greenwood2002|Greenwood & Earnshaw 2002, p.&nbsp;387]]</ref> Arsenic forms oxide sulfates As<sub>2</sub>O(SO<sub>4</sub>)<sub>2</sub> (= As<sub>2</sub>O<sub>3</sub>.2SO<sub>3</sub>)<ref>[[#Mercier1982|Mercier & Douglade 1982]]</ref> and As<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> (= As<sub>2</sub>O<sub>3</sub>.3SO<sub>3</sub>).<ref>[[#Douglade1982|Douglade & Mercier 1982]]</ref> Antimony forms a sulfate Sb<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> and an oxysulfate (SbO)<sub>2</sub>SO<sub>4</sub>.<ref>[[#Wiberg2001|Wiberg 2001, p.&nbsp;764]]</ref> Tellurium forms an oxide sulfate Te<sub>2</sub>O<sub>3</sub>(SO)<sub>4</sub>.<ref>[[#Wickleder2007|Wickleder 2007, p.&nbsp;350]]</ref> ''Less common:'' Polonium forms a sulfate Po(SO<sub>4</sub>)<sub>2</sub>.<ref>[[#Bagnall1966|Bagnall 1966, pp.&nbsp;140−41]]</ref> It has been suggested that the astatine cation forms a weak complex with sulfate ions in acidic solutions.<ref>[[#Berei1985|Berei & Vasáros 1985, pp.&nbsp;221, 229]]</ref>|group=n}}}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|some form{{#tag:ref|Hydrogen forms [[hydrogen sulfate]] H<sub>2</sub>SO<sub>4</sub>. Carbon forms (a blue) graphite hydrogen sulfate <span style="white-space: nowrap">C{{su|b=24|p=+}}HSO{{su|b=4|p=–}}&nbsp;•&nbsp;2.4H<sub>2</sub>SO<sub>4</sub>.<ref>[[#Wiberg2001|Wiberg 2001, p.&nbsp;795]]</ref></span> Nitrogen forms nitrosyl hydrogen sulfate (NO)HSO<sub>4</sub> and nitronium (or nitryl) hydrogen sulfate (NO<sub>2</sub>)HSO<sub>4</sub>.<ref>[[#Lidin1996|Lidin 1996, pp.&nbsp;266, 270]]; [[#Brescia1975|Brescia et al. 1975, p.&nbsp;453]]</ref> There are indications of a basic sulfate of selenium SeO<sub>2</sub>.SO<sub>3</sub> or SeO(SO<sub>4</sub>).<ref name="Greenwood 2002, p.&nbsp;786">[[#Greenwood2002|Greenwood & Earnshaw 2002, p.&nbsp;786]]</ref> Iodine forms a polymeric yellow sulfate (IO)<sub>2</sub>SO<sub>4</sub>.<ref>[[#Furuseth1974|Furuseth et al. 1974]]</ref>|group=n}}}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |With halogens ([[halide]]s,{{nbsp}}esp.{{nbsp}}[[chloride]]s) (see{{nbsp}}also<ref>[[ویژگی‌های فلزات، شبه‌فلزات و نافلزات#Holtzclaw1991|Holtzclaw, Robinson & Odom 1991, pp.&nbsp;706–07]]; [[ویژگی‌های فلزات، شبه‌فلزات و نافلزات#Keenan1980|Keenan, Kleinfelter & Wood 1980, pp.&nbsp;693–95]]</ref>)
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|typically ionic, involatile|generally insoluble in organic solvents|mostly water-soluble (not [[hydrolysis|hydrolysed]])|more covalent, [[volatility (chemistry)|volatile]], and susceptible to hydrolysis<ref group=n>layer-lattice types often reversibly so</ref> and organic solvents with higher halogens and weaker metals<ref>[[#Kneen1972|Kneen, Rogers & Simpson 1972, p.&nbsp;278]]</ref><ref>[[#Heslop1963|Heslop & Robinson 1963, p.&nbsp;417]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|covalent, volatile<ref>[[#Rochow1966|Rochow 1966, pp.&nbsp;28–29]]</ref>|usually dissolve in organic solvents<ref>[[#Bagnall1966|Bagnall 1966, pp.&nbsp;108, 120]]; [[#Lidin1996|Lidin 1996, passim]]</ref>|partly or completely hydrolysed<ref name=metalloid-halide-hydrolysis>[[#Smith1921|Smith 1921, p.&nbsp;295]]; [[#Sidgwick1950|Sidgwick 1950, pp.&nbsp;605, 608]]; [[#Dunstan1968|Dunstan 1968, pp.&nbsp;408, 438]]</ref>|some reversibly hydrolysed<ref name=metalloid-halide-hydrolysis/>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|covalent, volatile|usually dissolve in organic solvents|generally completely or extensively hydrolyzed|not always susceptible to hydrolysis if parent nonmetal at maximum [[wikt:covalence|covalency]] for [[Period (periodic table)|period]] e.g. CF<sub>4</sub>, SF<sub>6</sub> (then nil reaction)<ref>[[#Dunstan1968|Dunstan 1968, pp.&nbsp;312, 408]]</ref>}}
|- id="Compare2c"
| colspan="4" style="border-top:1px solid black; border-bottom:1px solid black;" |'''Environmental chemistry'''
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Mole (chemistry)|Molar]] composition of Earth's [[Biosphere#Narrow definition|ecosphere]]{{#tag:ref|Based on a table of the elemental composition of the biosphere, and lithosphere (crust, atmosphere, and seawater) in Georgievskii,<ref>[[#Georgievskii|Georgievskii 1982, p.&nbsp;58]]</ref> and the masses of the crust and hydrosphere give in Lide and Frederikse.<ref>[[#Lide|Lide & Frederikse 1998, p.&nbsp;14–6]]</ref> The mass of the biosphere is negligible, having a mass of about one billionth that of the lithosphere.{{Citation needed|date=February 2015}} "The oceans constitute about 98 percent of the hydrosphere, and thus the average composition of the hydrosphere is, for all practical purposes, that of seawater."<ref>[[#Hem|Hem 1985, p.&nbsp;7]]</ref>|group=n}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|about 14%, mostly Al, Na, Ng, Ca, Fe, K}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|about 17%, mostly Si}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|about 69%, mostly O, H}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |Primary form [[Abundance of the chemical elements#Abundance of elements in the Earth|on Earth]]
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|most occur in combined states, as [[carbonate]]s, [[silicate]]s, [[phosphate]]s, [[oxide]]s, [[sulfide]]s, or [[halide]]s|some (e.g. [[gold|Au]], [[copper|Cu]], [[silver|Ag]], [[platinum|Pt]]) occur in free or uncombined states<ref>[[#Perkins|Perkins 1998, p.&nbsp;350]]</ref>}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|all occur in combined states, as [[borate]]s, silicates, sulfides, or [[telluride (chemistry)|tellurides]]}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|elemental [[carbon|C]], [[nitrogen|N]], [[oxygen|O]], [[sulfur|S]], [[noble gas]]es are plentiful|[[hydrogen|H]],{{#tag:ref|Hydrogen gas is produced by some bacteria and [[algae]] and is a natural component of [[flatus]]. It can be found in the Earth's atmosphere at a concentration of 1 part per million by volume.|group=n}} [[fluorine|F]]{{#tag:ref|Fluorine can be found in its elemental form, as an occlusion in the mineral [[antozonite]]<ref>[[#SandersonK|Sanderson 2012]]</ref>|group=n}}, [[selenium|Se]] occur primarily in compounds|[[Phosphorus|P]], [[chlorine|Cl]], [[bromine|Br]], [[iodine|I]] occur only in compounds, as phosphates, oxides, [[selenide]]s or halides}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Dietary element|Required by mammals]]
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|large amounts needed: [[sodium|Na]], [[magnesium|Mg]], [[potassium|K]], [[Calcium|Ca]]|trace amounts needed of some others}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|trace amounts needed: [[boron|B]], [[silicon|Si]], [[arsenic|As]]}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|large amounts needed: [[hydrogen|H]], [[carbon|C]], [[nitrogen|N]], [[oxygen|O]], [[phosphorus|P]], [[sulfur|S]], [[chlorine|Cl]]|trace amounts needed: [[selenium|Se]], [[bromine|Br]], [[iodine|I]], possibly [[fluorine|F]]|only noble gases not needed}}
|- style="vertical-align:top;"
| scope="row" style="padding-left: 1.2em; border-bottom:1px dotted gray;" |[[Composition of the human body]], by weight
| style="border-bottom:1px dotted gray; background-color:{{Element color|metal}}; padding-left:3px;" |{{bulleted list|about 1.5% [[calcium|Ca]]|traces of most others through <sub>92</sub>[[uranium|U]]}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|metalloid}}; padding-left:3px;" |{{bulleted list|trace amounts of [[boron|B]], [[silicon|Si]], [[germanium|Ge]], [[arsenic|As]], [[antimony|Sb]], [[tellurium|Te]]}}
| style="border-bottom:1px dotted gray; background-color:{{Element color|nonmetal}}; padding-left:3px;" |{{bulleted list|about 97% [[oxygen|O]], [[carbon|C]], [[hydrogen|H]], [[nitrogen|N]], [[phosphorus|P]]|others detectable except noble gases}}
|}<!--
 
-->
{{documentation}}
 
== Footnotes ==
{{Reflist|group=n}}{{template references list}}
 
 
== فلزات ==
 
=== آنتیموان ===
یک انفجار با انرژی بالا از آنتیموان ابتدا در سال ۱۸۵۸ به دست آمد. این توسط الکترولیز هر یک از SbCl 3، SbBr 3، SbI 3 در یک محلول هیدروکلریک اسید در دمای پایین تهیه می‌شود و هنگامی که خراشیده، زده، پودر شده یا گرم به سرعت به ۲۰۰ ° C، آن را «انفجار، جرقه را منتشر می‌کند و انفجاری تبدیل به آنتیموان ثانویه خاکستری بلورین» می‌شود.<ref>{{Cite journal|date=2019-04-13|title=Properties of metals, metalloids and nonmetals|url=https://en.wikipedia.org/w/index.php?title=Properties_of_metals,_metalloids_and_nonmetals&oldid=892317507|journal=Wikipedia|language=en}}</ref>
 
== غیر فلزات ==
آب (H2O)، یک اکسید شناخته‌شده از هیدروژن، یک ناهنجاری تماشایی است. هیدروژن سولفید هیدروژن از هیدروژن سولفید هیدروژن، یعنی H2S سولفید هیدروژن، هیدروژن سولفید هیدروژن و هیدروژن تلورید هیدروژن، آب باید " یک گاز متعفن، سمی، قابل‌اشتعال … تراکم داشته باشند حدود ۱۰۰ درجه سانتی گراد ". در عوض، به دلیل پیوند هیدروژنی، آب " پایدار، بی‌بو و … ضروری برای زندگی " است.
 
کم‌تر شناخته‌شده از اکسیده‌ای هیدروژن، تری‌اکسیدان است. مارسلین بارتلت وجود این اکسید را در ۱۸۸۰ پیشنهاد کرد اما پیشنهاد او به زودی فراموش شد چون هیچ راهی برای آزمایش آن با استفاده از فناوری زمان وجود نداشت. تری‌اکسیدان در سال ۱۹۹۴ با جایگزینی اکسیژن مورد استفاده در فرایند صنعتی برای تولید آب‌اکسیژنه، با اوزون آماده شد. بازده حدود ۴۰ درصد در دمای -۷۸ درجه سانتی گراد است؛ در بالا در حدود ۴۰–۴۰ درجه سانتی گراد به آب و اکسیژن تجزیه می‌شود. مشتقات of سهواکسید، مانند F3C - O - O - O - O و برخی مواد دیگر که در دمای اتاق کم ثبات هستند. در سال ۱۸۹۵ دمیتری وارد مرحله بعدی شد و وجود هیدروژن و OH - o - O - O را به عنوان واسط گذرا در تجزیه آب‌اکسیژنه ایجاد کرد.<ref>{{Cite journal|date=2019-04-13|title=Properties of metals, metalloids and nonmetals|url=https://en.wikipedia.org/w/index.php?title=Properties_of_metals,_metalloids_and_nonmetals&oldid=892317507|journal=Wikipedia|language=en}}</ref>
 
=== هلیوم ===
در دمای زیر ۰٫۳ و ۰٫۸ کیلوگرم، هلیوم ۳ و هلیم ۴ هر یک آنتالپی منفی همجوشی دارند. این بدان معنی است که با فشارهای ثابت مناسب، این مواد با اضافه کردن گرما به یخ زده می‌شوند و تا سال ۱۹۹۹ به نظر می‌رسید هلیم برای تشکیل کلاته کلاسیک بسیار کوچک است - ترکیباتی که در آن یک اتم یا مولکول مهمان در قفس تشکیل شده توسط یک مولکول میزبان در فشار اتمسفر جابه‌جا شده‌است. در آن سال سنتز مقادیر میکروگرام He @ C 20 H 20 نشان دهنده اولین کلریت هلیوم و (کوچکترین کلاهک هلیم) جهان بود که گرافیت اکثریت الکتریکی غیررسمی است که بهتر از برخی فلزات است.<ref>{{Cite journal|date=2019-04-13|title=Properties of metals, metalloids and nonmetals|url=https://en.wikipedia.org/w/index.php?title=Properties_of_metals,_metalloids_and_nonmetals&oldid=892317507|journal=Wikipedia|language=en}}</ref>
 
=== کربن ===
لماس بهترین هدایت گرما طبیعی است. حتی احساس لمس کردن را احساس می‌کند. هدایت حرارتی (۲،200 W / m • K) پنج برابر بیشتر از فلز هدایت کننده (Ag در ۴۲۹) است که ۳۰۰ برابر بیشتر از فلز رسانا (Pu در ۶٫۷۴)؛ و تقریباً ۴۰۰۰ بار از آب (۰٫۵۸) و ۱۰۰٫۰۰۰ بار از هوا (۰٫۰۲۲۴) واین هدایت حرارتی بالا توسط جواهرات و گوهرشناسان برای جدا کردن الماس از ناخالصی‌ها استفاده می‌شود.
 
گرافن آئروژل، در سال ۲۰۱۲ توسط یخ خشک شدن یک راه حل از تولید نانو لوله‌های کربنی و اکسید گرافیت ورق و از بین بردن مواد شیمیایی اکسیژن است که در هفت برابر سبک‌تر از هوا، و ده درصد سبک‌تر از هلیوم. این سبک‌ترین جامد شناخته شده‌است.<ref>{{Cite journal|date=2019-04-13|title=Properties of metals, metalloids and nonmetals|url=https://en.wikipedia.org/w/index.php?title=Properties_of_metals,_metalloids_and_nonmetals&oldid=892317507|journal=Wikipedia|language=en}}</ref>
 
=== فسفر ===
۲۰

ویرایش