تفاوت میان نسخه‌های «انتگرال»

۳۰۶ بایت اضافه‌شده ،  ۳ ماه پیش
جز
بدون خلاصه ویرایش
(نجات ۱ منبع و علامت‌زدن ۰ به‌عنوان مرده.) #IABot (v2.0)
جز
[[پرونده:Integral example.svg|جایگزین=انتگرال معین|بندانگشتی|300پیکسل|انتگرال معین تابعی را می‌توان به صورت مساحت علامت دار ناحیه ای محدود به نمودار آن تابع به تصویر کشید.]]
{{حساب دیفرانسیل و انتگرال}}
<ref>{{یادکرد وب|عنوان=آموزش ریاضی عمومی 1 (همراه با حل مثال و تست کنکور کارشناسی ارشد)|نشانی=https://faradars.org/courses/fvmth109-mathematics-i-problem-solving|وبگاه=فرادرس|بازبینی=2020-01-01|کد زبان=fa-IR}}</ref>در [[ریاضیات]]، '''انتگرال''' روشی برای اختصاص اعداد به [[تابع|توابع]] است، به گونه ای که [[جابه‌جایی|جابجایی]]، [[مساحت]]، [[حجم]] و دیگر مفاهیم برآمده از ترکیب داده‌های بی‌نهایت کوچک را به وسیله آن بتوان توصیف کرد. انتگرال‌گیری یکی از دو عمل مهم در [[حسابان|حساب دیفرانسیل و انتگرال]] است، که عمل دیگر آن (عمل معکوس) دیفرانسیل‌گیری می‌باشد. برای تابع داده شده‌ای چون f از متغیر حقیقی x و بازه <math>[a, b]</math> از خط حقیقی، '''انتگرال معین''':
{{وسط‌چین}}
: <math>\int_a^b f(x)\,dx</math>
۱۳

ویرایش