پلی‌اورتان: تفاوت میان نسخه‌ها

محتوای حذف‌شده محتوای افزوده‌شده
افزودن مطلب
برچسب‌ها: ویرایش همراه ویرایش از وبگاه همراه
Kourosh Tehrani (بحث | مشارکت‌ها)
ویرایش‌های دارای حسن نیت 89.196.148.218 (بحث) برگردانی شد (توینکل)
برچسب: خنثی‌سازی
خط ۱:
[[پرونده:Polyurethane.png|بندانگشتی]]
'''پلی‌یورتان''' {{انگلیسی|Polyurethane}} به دسته‌ای از [[مواد شیمیایی]] اطلاق می‌شود که از واکنش [[پلی ال]]‌ها و [[ایزوسیانات]]‌ها به‌عنوان مواد اصلی تشکیل دهنده ساخته می‌شوند.بعضا به این‌ماده اشتباها پلی اورتان نیز گفته‌ میشود
 
== کشف ==
خط ۲۴:
 
== کاربرد ==
پلی‌یورتان‌هاپلی‌اورتان‌ها به شکل‌های مختلف از جمله فوم‌های نرم، فوم‌های سخت؛ الاستومرها، ترموپلاستیک الاستومرها، رزین، رنگ، پوشش و… در دنیا کاربرد دارند.
یکی از کاربردهای پلی‌یورتان‌ها،پلی‌اورتان‌ها، استفاده به عنوان پوشش لوله‌های مدفون در خاک با هدف حفاظت در برابر خوردگی می‌باشد. پلی‌اورتان مورد استفاده در این روش، از نوع ۱۰۰٪ جامد و با مواد اولیه دو جزئی است ولی نبایستی چسبندگی زیادی به سطح لوله از این پوشش توقع داشت. پلی یورتان‌هااورتان‌ها در شرایط کاربری خاص مانند دمای بالای خط لوله یا تعمیرات پوشش اصلی کاربرد دارند و کمتر به عنوان پوشش اصلی خطوط انتقال استفاده می‌شوند.
استفاده از پوشش‌های پلی‌یورتانپلی‌اورتان جهت پوشش داخلی خطوط انتقال کاربرد بسیار محدودی داشته و به علت آزادکردن ترکیبات سمی ایزوسیانات جهت پوشش داخلی توصیه نمی‌گردد. کاربرد ترکیبات پلی اورتان نیز به‌طور پیوسته رو به توسعه است.
 
ماستیک‌های پلی یورتاناورتان و سیلیکون با توجه به خواص شیمیایی و مکانیکی خود داری کاربردها مختلفی می‌باشند. در کانال ها و مخازن آب و فاضلاب، کف‌سازی سالن‌ها، پیاده‌روها، درز قطعات پیش‌ساخته و کلیه درزهایی که باید در برابر نفوذ آب و دیگر مایعات محافظت گردد و همچنین برای ساخت زیره کفش استفاده می‌شود.
 
== چگونگی ساخت ترکیبات پلی‌یورتانپلی‌اورتان ==
آمیختن پلی‌یورتان‌پلی‌اورتان‌ با پلی اوره امری متداول است و روندی رو به رشد دارد. پلی‌اورتان‌ دسته‌ای از پلیمرهای پر مصارف با خواص عالی هستند. به همین خاطر، طراحان و متخصصان صنایع پوشش دهی به خوبی توان بهره‌برداری از این ترکیبات را در کاربردهای گوناگون دارند از جمله پوشش‌های شفاف برای پوشش دهنده‌های تک لایه مخصوص بام‌ها و رنگ‌های مورد استفاده برای مشخص کردن محل گذر عابرین پیاده و…
 
مقاومت پلی‌یورتان‌ها در برابر سایش ضربه و ترک خوردگی بسیار خوب است، از جمله ویژگی‌های آن‌ها پخت سریع و کامل در دمای محیط است. پلی‌یورتان‌ها آلیفاتیک از انواع آروماتیک گرانتر هستند. به همین خاطر انواع آروماتیک و نمونه‌های اپوکسی دار در استرها، رنگ‌های پایه و پوشش‌های رابط بکار می‌روند. در حالی که آلیفاتیک‌ها ویژه پوشش نهایی هستند. استفاده از پوشش‌های محافظ برای جلوگیری از پدیده خوردگی در ساختارهای فولادی که آستر و پوشش پایه آن‌ها از نوع سامان‌های اپوکسی دار است، نمونه‌ای از کاربردهای مهم پلی‌اورتان‌ها محسوب می‌شوند. مورد دیگر، سامانه‌های پوشش دهنده کف است که در آن‌ها نیز انواع پوشش‌های پایه را می‌توان بکار برد، گاهی پوشش نهائی از نوع اورتان برای لایه نهایی کف نیز کفایت می‌کند. کاربرد پلی‌اورتان‌ها و پلی اوره‌ها در کفپوش‌ها انواع فناوری کاربرد پوشش‌های کف همگی بر دو اصل استوارند. یکی از آن‌ها فناوری [[فیلم نازک]] است که یک یا چند پوشش با ضخامت حدود ۵۰ تا ۱۲۵ میکرون روی سطح کف پوشش داده می‌شود. درزگیری و غبارزدایی نیز از جمله مراحل مهم در این روش محسوب می‌شوند که هدف نهایی آن‌ها رسیدن به کفپوش‌هایی با طرح‌های ریز و مزین است. رزین‌های مورد مصرف در پوشش‌های کف عبارتند از: آلکیدها، اپوکسی‌ها یا اپوکسی استری بر پایه آب و حلال، مخلوط‌های معلق، آمیخته‌های پلی‌اورتانی بر پایه آب و انواع پلیمرهای آکریلیکی، بهترین حالت برای این نوع کفپوش‌ها آن است که، اثر مواد شیمیایی یا آب روی سطح کفپوش به راحتی برطرف شود و لکه‌ای بر جای نماند. پوشش‌های آلکیدی در مقابل سودسوزآور بسیار ضعیف عمل می‌کنند. نوع دیگر پوشش دهی فناوری فیلم ضخیم است که در آن حداقل ضخامت پوشش ۲۰۰ میکرون و حداکثر آن گاهی به ده میلی‌متر هم می‌رسد. هدف از این نوع پوشش دهی پر کردن ترک ها، حفره‌ها و تسطیح سطوح شدیداً سایید شده‌است. سیمان و مصالح سنگی موردنظر با انواع رزین‌ها مخلوط می‌شوند: اپوکسی‌ها، پلی‌اورتان‌های آروماتیک (غالباً روغن کوچک و MDI دی فنیل متان ۴_ ،۴_ دی ایزوسیانات لاتکس SBR و اکریلیکی پر مصرف‌ترین رزین‌ها هستند). روش کار به شکل پاشش یا ریختن پوشش روی سطح و به دنبال آن ماله کشی دستی یا اعمال فشار به وسیله غلتک است. در برخی از موارد در کفپوش‌های ضخیم از استرهای غیر اشباع، وینیل استرها و اپوکسی‌های با میزان صد در صد جامد استفاده می‌شود. پلی‌یورتان‌هایپلی‌اورتان‌های آروماتیک بر پایه MDI برای پوشش دهی کف زیاد بکار می‌روند، چرا که MDI ایزوسیاناتی نسبتاً ارزان است. جالب است که بدانید مولکول MDI و پلیمر سنتز شده از آن به راحتی پرتو فرابنفش را جذب می‌کنند، زرد شدن پوشش‌هایی که در معرض نور خورشید واقع شده‌اند به دلیل همین مسئله است.
[[پرونده:PUaminepolymerization.png|بندانگشتی|PUaminepolymerization]]
 
== پلی اوره ==
در چند سال اخیر فناوری پوشش‌های پلی اوره گسترش و کاربرد یافته‌است. از مزایای اصلی این نوع پوشش‌ها سخت شدن بسیار سریع آنهاست که نتیجه آن، دسترسی به یک فناوری پرشتاب است. در سامانه‌های پلی اوره بر پایه هگزامتیلن دی ایزوسیانات (TMXDI) پوشش پاشیده شده روی بلوک یخ در عرض ۲۰ ثانیه سخت می‌شوند. پوشش‌های پلی اوره در پوشش دهی خطوط لوله‌های انتقال نفت کاربرد دارند و مقدار جریان کاتدی مورد نیاز در حفاظت کاتدی را کم می‌کنند. در بسیاری از موارد سامانه‌های پلی اوره همانند پلی‌یورتان‌هایپلی‌اورتان‌های دو جزئی هستند. سامانه پوششی در پلی‌یورتان‌هایپلی‌اورتان‌های متداول از یک بخش A متشکل از پلی اوره (و رنگدانه در صورت نیاز) و یک بخش B که غالباً سخت‌کننده است، تشکیل می‌شود. سرعت واکنش تشکیل پلی اوره بی‌نهایت زیاد است به‌طوری‌که تجهیزات پاشش ویژه‌ای مورد نیاز است. زمانی بود که بخش ایزوسیاناتی را مونومر MDI تشکیل می‌داد. این نوع سامانه‌های پلی اوره ارزان بوده و خواص خوبی دارند. البته بعدها در اوایل دهه ۹۰ در انگلستان و ایالات متحده سامانه‌های آلیفاتیک وارد بازار شدند. در این سامانه‌ها پایداری نوری به مراتب بهتر شده و هرگاه که ایزوسیانات مصرفی TXMDI باشد، سرعت واکنش کمتر می‌شود. با این حال هنوز هم سرعت واکنش تشکیل پلی اوره چنان زیاد است که برای پژوهشگران مشکل ایجاد می‌کند. زمانی که پلی اوره به‌طور دستی تهیه می‌شود، سامانه پس از چند ثانیه غیرقابل استفاده شده و قالب گیری و تهیه فیلم از آن امکانپذیر نخواهد بود. با این حال تهیه نمونه‌ها به روش پاشش امکانپذیر است، ولی هنگامی که نمونه‌ها در سردخانه خیلی سرد شوند جابجایی مواد بسیار مشکل است.
 
روش ساخت: رنگدانه را به مقداری از آمین و افزودنی‌ها اضافه می‌کنند تا مخلوط مناسب برای غلتک کاری بدست آید. زمانی که مخلوط به حالتی رسید که به راحتی خرد شود، باقی‌مانده آمین را نیز به ان می‌افزایند. در صورت وجود رنگدانه‌های آلی لازم است به جای توزیع‌کننده‌های سریع از آسیاب غلتکی افقی استفاده شود. همچنین، دمای مخلوط باید به 350 درجه سانتی گراد برسد. در مرحله بعد در اتمسفر نیتروژن، ایزوسیانات به آهستگی در مدت زمان ۳۰ دقیقه به مخلوط آمین اضافه و به حد کافی هم زده می‌شود. باید اجازه داد که دمای واکنش گرمازا به 350 درجه سانتی گراد برسد و سپس محصول برداشته شود. ویکس و همکارانش سرعت سامانه‌های پلی اوره را تا حدی کند کردند به‌طوری‌که امکان استفاده از سامانه‌های پلی‌اورتانی در تجهیزات پوشش دهی به‌طور مستقیم و بدون تغییر به وجود آمد. گرانروی(ویسکوزیته) آمین‌های دارای گروه‌های جانبی، بیشتر از آمین‌های ساده است و این در حالی است که وزن مولکولی آن‌ها نیز بیشتر است. یک راه برای کم کردن گرانروی و بهتر کردن خواص، استفاده از [[اکسازولیدین]] با گرانروی کم است. یکی از معایب این سامانه نیاز آن به اجزای با گروه‌های عاملی ایزوسیانات است. صنعت رنگ هنوز راه زیادی در پیش رو دارد تا به فناوری عاری از ایزوسیانات‌ها دست یابد. سامانه‌های آمیخته یکی از راه‌های بکارگیری اکسازولیدین و [[پلی اوره]](ترکیب کردن دو سامانه) با هم است. لازم است که موازنه شیمیایی انجام گیرد که البته سامانه‌های با حجم یک به یک چنین‌اند. در برخی از موارد، وجود عامل رطوبت زا برای عمل سخت شدن ضرورت دارد. در کفپوش‌های با سامانه‌های بر پایه آب، هنگامی که سطح زیادی با سامانه‌های رنگی بر پایه حلال رنگ می‌شود، مقادیر قابل توجهی از ترکیبات آلی فرار وارد می‌شود. کاربرد روزافزون پوشش‌ها، بازار بزرگی برای سامانه‌های عاری از حلال یا سامانه‌های بر پایه آب به وجود آورده‌است. رنگ‌های پلی‌اورتانی و آمیخته‌های آن‌ها و رزین‌های آکریلیکی سهم زیادی از بازار اروپا را به خود اختصاص داده‌اند. پلیمرهای اکریلیکی امولسیونی یا همان لاتکس‌ها نسبتاً ارزان‌تر هستند. امولسیون‌های آکریلیکی نیز تقریباً برای چند سال جزو کالاهای مقرون به صرفه محسوب می‌شدند که کاربرد زیادی در پوشش‌های تزئینی دارند، بخصوص در کفپوش‌های از جنس پلی‌یورتانپلی‌اورتان که در مقابل سایش نسبت به نوع آکریلیکی بسیار مقاوم ترند، ولی این ترکیبات گران بوده و تلاش می‌شود تا فرمول‌های جدید ارزان از آن‌ها تهیه شود.
 
به منظور ساخت رزین‌های پراکنشی پلی‌یورتانیپلی‌اورتانی (PUD)، روش مرسوم در ساخت رزین‌های پراکنشی پلی‌یورتانی بر پایه آب، تهیه پیش پلیمری با گروه پایانی ایزوسیانات است که پلی ال اصلاح‌کننده در ساختار زنجیر، گروه عاملی [[کربوکسیلیک اسید]] را به وجود می‌آورد و در مرحله بعد این ماده با آمین نوع سوم در آب پخش می‌شود تا مراکز یونی به وجود آورد. به این ترتیب ذرات پلیمر پایدار می‌گردند. حضور یک پلی آمین موجب می‌شود طول زنجیر اجزای تشکیل دهنده زیادتر شود. در برخی مخلوط‌ها نسبت مولی گروه‌های NCO به OH دقیقاً ۲ به ۱ است. در نسبت مولی حدود ۱ به ۱، گرانروی بسیار زیاد می‌شود و تهیه رزین‌های پراکنشی پلی‌یورتانیپلی‌اورتانی با مشکل روبرو می‌شود. در ضمن خطر ژله‌ای شدن نا به هنگام هم وجود دارد؛ ولی اگر این نسبت کمتر از ۱٬۵ به ۱ باشد امکان بروز چنین خطری کمتر می‌شود. برای پایین آوردن سریع دما در حین تهیه مخلوط‌های پلی‌اورتانی از یخ استفاده می‌شود. در نتیجه سرعت واکنش بین آب و گروه ایزوسیانات کم می‌گردد. بهترین حالت آن است که پیش پلیمر با گروه پایانی NCO با افزاینده زنجیر آمینی واکنش دهد. با این حال پراکنده کردن پیش پلیمر در آب، به ویژه در یک واحد صنعتی نیازمند زمان مشخصی است. در هر صورت واکنش‌های جانبی نامطلوب بین آب و ایزوسیانات رخ می‌دهد. با سرد کردن مخلوط خنثی تا زیر دمای 50 درجه سانتی گراد واکنش‌های جانبی به حداقل میزان خود می‌رسند. راه‌های زیادی برای اصلاح خواص و کارایی رزین‌های پراکنشی پلی‌اورتانی وجود دارد. یکی از روش‌های اصلاح به فناوری اختلاف معروف است. رزین‌های پراکنشی پلی‌یورتانیپلی‌اورتانی در حضور سایر پلیمرها تهیه می‌شوند. یا به عبارت دیگر با آن‌ها مخلوط می‌شوند و قبل از پراکنده شدن پلی‌یورتان،پلی‌اورتان، پیش پلیمر تازه که برای تهیه رزین پراکنشی پلی‌یورتانیپلی‌اورتانی بکار می‌رود باید اصلاح شود. با وارد کردن نوعی اصلاح‌کننده اپوکسی دار به درون ساختار پیش پلیمر، می‌توان استحکام چسبندگی رزین‌های پراکنشی پلی‌یورتانیپلی‌اورتانی را زیاد کرد. برای مثال، پروپیلن اکسید بر پایه دی گلیسیدیل اتر با وزن مولکولی بیش از ۷۰۰ با دی اتانول آمین به نسبت مولی یک به یک در دمای 60 درجه سانتی گراد واکنش می‌دهد و ترکیبی با گروه پایانی اپوکسی و سه گروه OH به وجود می‌آید. با NMP به عنوان حلال کمکی، می‌توان گرانروی را کنترل کرد. پیش از افزودن ایزوسیانات ترکیب حد واسط را به مخلوط پلی ال و DMPA اضافه می‌کنند. گروه انتهایی اپوکسی با گروه‌های ایزوسیانات یا افزاینده زنجیر پلی آمین واکنش نمی‌دهد، چرا که واکنش با ایزوسیانات و آمین به ویژه زمانی که دما پایین باشد، بسیار کند است. می‌توان از رزین‌های پراکنشی پلی‌یورتانیپلی‌اورتانی اصلاح شده برای پوشش دادن انواع پلاستیک‌های مصرفی در صنایع خودروسازی استفاده کرد یا آنکه این مخلوط‌ها را در ترکیب یک ایروسل بر پایه آب بکار برد. در این حالت به ماده‌ای مانند دی متیل اتر نیاز است. یکی از روش‌های کاهش قیمت، اختلاط رزین‌های پراکنشی پلی‌اورتانی با پلیمرهای آکریلیک است. مدت مدیدی است که در اروپا از پوشش‌های رنگدانه دار بر پایه آب حاوی مخلوط ۵۰:۵۰ از مخلوط معلق پلی‌یورتانیپلی‌اورتانی و رزین‌های امولسیونی آکریلیکی در تهیه کفپوش‌ها استفاده می‌شود. این پوشش‌ها در حالت خشک سطح نیمه براق سفید رنگی را ایجاد می‌کنند که برای پوشش کف‌های بتنی یا تزئین کفپوش‌های چوبی به ویژه در مواردی که مقاومت در برابر الکل یا آب حائز اهمیت است، بسیار مناسب تشخیص داده‌ شده اند. یکی از مزایای بسیار مهم مخلوط معلق پلی‌یورتانیپلی‌اورتانی بر پایه آب، کامل شدن واکنش‌ سامانه ها در این مدت است، به‌طوری‌که در پایان واکنش هیچ ایزوسیانات آزادی بر جای نمی‌ماند. در دراز مدت با حرکت صنعت پوشش دهی به سوی سامانه های عاری از ایزوسیانات این مورد یک مزیت جدی تلقی می‌گردد.
 
== سامانه‌های بر پایه سیمان ==
اخیراً تعدادی از شرکت‌ها در کف پوش‌های مورد استفاده خود، سیمان‌های اصلاح شده پلی‌یورتانیپلی‌اورتانی را بکار برده‌اند. از جمله خواص مهم در این ترکیب می‌توان به کم بودن گاز [[دی اکسید کربن]] به وجود آمده، مسطح شدن خوب و زمان کاری حدود ۳۰ دقیقه آن اشاره کرد. هر سه جزء سازنده روی خواص پوشش کف بر پایه سیمان اصلاح شده با پلی‌اورتان اثر می‌گذارند. در این نوع سامانه‌های پلی‌یورتانیپلی‌اورتانی از واکنش اجزای سازنده با آب، [[اوره]] و گاز دی‌اکسید کربن به وجود می‌آید که علت آن وجود MDI در فرمول است. MDI با گروه‌های هیدروکسی در روغن کرچک که نوعی تری گلیسیرید اسید الکل چرب است، واکنش می‌دهد مخلوط سیمان – پلی‌یورتانپلی‌اورتان پوشش سختی به وجود می‌آورد که می‌توان انواع پوشش‌های به حالت مایع را برای تزئین روی آن بکار برد. [[آهک]] موجود در ترکیب آب را جذب می‌کند و سرعت سخت شدن سیمان به این روش کنترل می‌شود. در ضمن آهک مقداری از دی‌اکسید کربن حاصل از واکنش MDI و آب را نیز جذب خود می‌کند. واکنش آهک با دی‌اکسید کربن و آب بشرح زیر است:
 
CaO+CaCO3 ----> CaCO3 Ca(OH)+ CO2 ----> CaCO3+H2O در فناوری نوین بخشی از سامانه رنگ زای پوشش را ملات تشکیل می‌دهد. ملات مخلوطی از رزین‌های ویژه و جزء رنگزاست که از سیمان و الیاف تشکیل می‌شود. الیاف انعطاف‌پذیری لازم را به پوشش داده و رشد ترک را کنترل می‌کند، ضمن آنکه استحکام کششی را بهبود می‌بخشد. استحکام کششی ترکیبات سیمانی مانند اکثر مواد [[سرامیک]]ی کم، ولی استحکام فشاری آن‌ها زیاد است. با افزودن الیاف با برخی از پلیمرها می‌توان ویژگی‌های رشد ترک را در پوشش کنترل کرد. وقتی سیمان با آب ترکیب می‌شود، یون‌های OH به تعداد فراوان تشکیل شده و PH شدیداً بالا می‌رود. اگر از این نوع پوشش‌ها برای پوشش دهی سطوح فولادی استفاده شود، محیط قلیایی حاصل، فولاد را در برابر خوردگی محافظت می‌کند. درست مانند آنچه که در بتن‌های مسطح با میلگردهای فولادی به وقوع می‌پیوندد. این نوع پوشش‌ها را می‌توان روی سطوح عمودی مانند لوله‌های انتقال نفت به راحتی مورد استفاده قرارداد. حاصل کار، سامانه‌های ارزان قیمت مقاوم در برابر خوردگی است که بسیار انعطاف‌پذیر، محکم و نیز بادوام هستند. نتیجه‌گیری استفاده از پلی‌یورتان‌ها،پلی‌اورتان‌ها، پلی اوره‌ها و رزین‌های پراکنشی پلی‌یورتانیپلی‌اورتانی و مواد شرکت‌کننده در واکنش‌های آن‌ها به‌طور پیوسته در حال رشد و توسعه است. این مواد بیشترین کاربرد را در پوشش دهی سطوح گوناگون دارند. مسائل زیست‌محیطی و مقررات جدید، فناوری نوین ساخت پوشش را به سوی سامانه های بدون حلال، پر جامد و سامانه‌های بر پایه آب هدایت می‌کنند. در آینده سامانه‌های پوشش دهی عاری از ایزوسیانات کاربری بیشتری پیدا خواهند کرد. طرح‌های نوینی برای سامانه‌های سیمانی اصلاح شده با پلیمرها به منظور حفاظت کف و سطوح فولادی وجود دارد<ref>{{cite web |title=Safety and Health Topics {{!}} Isocyanates {{!}} Occupational Safety and Health Administration |url=http://www.osha.gov/SLTC/isocyanates/ |website=www.osha.gov |accessdate=15 April 2020}}</ref>.
 
== پلی‌یورتانپلی‌اورتان پلیمری پرکاربرد ==
در اواخر سال ۱۹۸۰ تعدادی از دانشمندان شیمی، ساختار و مورفولوژی سطح پلی‌یورتان‌هاپلی‌اورتان‌ها را مورد بررسی قرار دادند و به تدریج روش‌های جدید پوشش دهی سطح به همراه پیوندهای مواد دیگر به سطح پلی‌اورتان‌ها، با هدف بهبود سازگاری با خون ابداع شد.
 
الاستومرهای پلی‌یورتانی،پلی‌اورتانی، خانواده‌ای از کوپلیمرهای توده‌ای بخش شده‌است که کاربردهای مهمی در زمینه‌های گوناگون صنعتی و پزشکی پیدا کرده‌است. اولین پلی‌یورتان،پلی‌اورتان، از واکنش دی [[ایزوسیانات]] آلیفاتیک با دی آمین به دست آمد. اتو بایر و همکارانش اولین بار این پلی‌یورتانپلی‌اورتان را معرفی نمودند که به شدت آب دوست بود و بنابراین به عنوان پلاستیک یا فیبر نمی‌توانست مورد استفاده قرار گیرد. واکنش بین دی ایزوسیانات‌های آلیفاتیک و گلیکول‌ها منجر به تولید پلی‌اورتانی با خصوصیات پلاستیکی و فیبری گردید. به دنبال آن، با استفاده از دی ایزوسیانات آروماتیک و گلیکول‌های با وزن مولکولی بسیار بالا، پلی‌اورتانی به دست آمد که خانواده مهمی از الاستومرهای ترموپلاستیک به‌شمار می‌رود.
 
خواص یورتان‌هااورتان‌ها از مواد ترموست بسیار سخت تا الاستومرهای نرم تغییر می‌کند. از پلی‌اورتان‌های ترموپلاستیک، در ساخت وسایل قابل کاشت بسیار مهمی استفاده می‌شود، چرا که دارای خواص مکانیکی خوب نظیر استحکام کششی، [[چقرمگی]]، مقاومت به سایش و مقاومت به تخریب شدن، به علاوه زیست سازگاری خوب می‌باشند که آن‌ها را در گروه مواد مناسب جهت کاربردهای پزشکی قرار می‌دهد.
 
== سلامتی و ایمنی ==
پلیمر پلی یورتاناورتان کاملاً واکنش یافته از نظر شیمیایی بی اثر است.<ref name=":0">{{یادکرد ژورنال |نام خانوادگی۱=Dernehl |نام۱=C. U |عنوان=Health hazards associated with polyurethane foams |ژورنال=Occupational Medicine |تاریخ=1966 |جلد=8 (2) |صفحات=59–62 |pmid=5903304}}</ref>هیچ محدودیتی برای قرار گرفتن در معرض پلی یورتاناورتان در ایالات متحده توسط OSHA (اداره ایمنی و بهداشت کار) یا ACGIH (کنفرانس آمریکایی بهداشت کارگران صنعتی) تعیین نشده است. این مسئله توسط OSHA به دلیل سرطان زایی تنظیم نشده است. پلیمرهای پلی یورتاناورتان یک جامد قابل احتراق است و در صورت قرار گرفتن در معرض شعله باز این اتفاق رخ می دهد. در اثر تجزیه در هنگام آتش سوزی، پلی یورتاناورتان می تواند علاوه بر اکسیدهای ازت ، ایزوسیانات ها و سایر محصولات سمی مقادیر قابل توجهی از مونوکسید کربن و هیدروژن سیانید تولید کند.<ref name=":1">{{یادکرد ژورنال |نام خانوادگی۱=McKenna |نام۱=Sean Thomas |نام خانوادگی۲=Hull |نام۲=Terence Richard |عنوان=The fire toxicity of polyurethane foams |ژورنال=Fire Science Reviews |تاریخ=21 آوریل 2016 |جلد=5 |شماره=1 |doi=10.1186/s40038-016-0012-3}}</ref> به دلیل اشتعال پذیری مواد، باید با استفاده از بازدارنده های شعله(عایق)، (حداقل در مورد وسایل منزل) این مشکل را برطرف کرد، که تقریبا همه آنها مضر تلقی می شوند.<ref name=":2">{{یادکرد وب |عنوان=Environmental Profiles of Chemical Flame-Retardant Alternatives for Low-Density Polyurethane Foam |نشانی=https://www.epa.gov/saferchoice/environmental-profiles-chemical-flame-retardant-alternatives-low-density-polyurethane}}</ref>
<ref name=":3">{{یادکرد وب |عنوان=Flame Retardants Used in Flexible Polyurethane Foam |نشانی=https://www.epa.gov/saferchoice}}</ref> بعدها کالیفرنیا بیانیه ای صادر کرد که در آن به اکثر فوم های پلی اورتان اجازه می داد تست های اشتعال پذیری را بدون استفاده از بازدارنده های شعله بگذرانند، موسسه سیاست گذاری علوم سبز اظهار می دارد: "گرچه استاندارد جدید بدون بازدارنده های شعله قابل انجام است، اما استفاده آنها ممنوع نیست. مشتریانی که مایل به کاهش وجود بازدارنده های شعله هستند می توانند به دنبال برچسب TB117-2013 روی مبلمان باشند و فروشندگان باید تأیید کنند که این محصولات حاوی مواد بازدارنده شعله نیستند.<ref name=":4">{{یادکرد وب |عنوان=The new California TB117-2013 regulation |نشانی=https://greensciencepolicy.org/wp-content/uploads/2015/06/TB117-2013_manufacturers_021114.pdf}}</ref>
 
خط ۱۳۰:
 
== اثرات نور مرئی ==
پلی یورتاناورتان ها، به ویژه آنهایی که با استفاده از ایزوسیانات های معطر ساخته می شوند، حاوی کروموفورهایی هستند که با نور تعامل دارند. این مورد مورد توجه خاصی در زمینه پوشش های پلی یورتاناورتان است، جایی که پایداری نور عامل مهمی است و دلیل اصلی استفاده ایزوسیانات های آلیفاتیک در ساخت پوشش های پلی اورتان است.<ref name=":8">{{یادکرد ژورنال |نام خانوادگی۱=Valentine |نام۱=C. |نام خانوادگی۲=Craig |نام۲=T.A. |نام خانوادگی۳=Hager |نام۳=S.L. |عنوان=Inhibition of the Discoloration of Polyurethane Foam Caused by Ultraviolet Light |ژورنال=Journal of Cellular Plastics |تاریخ=27 ژوئیه 2016 |جلد=29 |شماره=6 |صفحات=569–588 |doi=10.1177/0021955X9302900605}}</ref> هنگامی که فوم PU، که با استفاده از ایزوسیانات های معطر ساخته شده است، در معرض نور مرئی قرار می گیرد، تغییر رنگ داده و از سفید به زرد یا قهوه ای مایل به قرمز تبدیل می شود. به طور کلی پذیرفته شده است که به غیر از زردی، نور مرئی تأثیر کمی بر روی خواص فوم دارد. گزارش شده است که قرار گرفتن در معرض نور مرئی می تواند بر تغییرپذیری برخی نتایج تست خاصیت فیزیکی تأثیر بگذارد.<ref name=":9">{{یادکرد ژورنال |نام خانوادگی۱=Blair |نام۱=G |عنوان=The Effect of Visible Light on the Variability of Flexible Foam Compression Sets |ژورنال=Center for the Polyurethane Industry |تاریخ=2007}}</ref> همچنین پرتوهای اشعه ماوراء بنفش با انرژی بالاتر واکنشهای شیمیایی را در فوم ایجاد می کند، که بعضی از آنها برای ساختار فوم مضر هستند<ref name=":10">{{یادکرد ژورنال |نام خانوادگی۱=Newman |نام۱=Christopher R. |نام خانوادگی۲=Forciniti |نام۲=Daniel |عنوان=Modeling the Ultraviolet Photodegradation of Rigid Polyurethane Foams |ژورنال=Industrial & Engineering Chemistry Research |تاریخ=ژوئیه 2001 |جلد=40 |شماره=15 |صفحات=3346–3352 |doi=10.1021/ie0009738}}</ref>.
 
== نحوه به‌کارگیری پلی یورتاناورتان ==
پلی یورتاناورتان به عنوان یک عایق بسیار مناسب شناخته شده‌است که کاربردهای آن با تغییر دانسیته و سلول بندی متغیر می‌باشد. این مواد می‌تواند به عنوان عایق صوت (مواد سلول باز) یا عایق حرارت (مواد سلول بسته) استفاده شود. عایق کاری به کمک پلی یورتاناورتان عموماً یا به صورت پاشش یا تزریق یا پنل پیش‌ساخته می‌باشد.
 
== خواص ==