باز کردن منو اصلی

تغییرات

بدون خلاصه ویرایش
[[پرونده:Logscale.svg|thumb|300px|یک مقیاس لگاریتمی. اگر یک نقطهٔ xX تصادفی را روی محور انتخاب کنیم, تقریباً در ۳۰٪ موارد رقم نخست عدد ۱ است (پهن‌ترین نوار در هرکدام از توان‌های ده).]]
[[پرونده:Rozklad benforda.svg|thumb |left | 300px |توزیع بنفورد. هر ستون نمایانگر یک عدد است. ارتفاع هر ستون نشان‌دهندهٔ درصد احتمال ظاهرشدن آن عدد در رقم اول عددهای اندازه‌گیری‌شده‌است. مثلاً در این نمودار ارتفاع ستون ۴ حدود ۱۰ است، یعنی در ۱۰ درصد موارد، رقم اول عددها ۴ است.]]
'''قانون بِنفورد''' {{به انگلیسی|Benford's law}} یا '''قانون رقم اول''' می‌گوید که در فهرست عددهایی که در بسیاری از (البته نه همهٔ) پدیده‌های زندگی واقعی رخ می‌دهند، رقم اول عددها به طور خاص و غیریکنواختی توزیع می‌شود. بر طبق این قانون، تقریباً در یک‌سوم موارد رقم نخست ۱ است، و عددهای بزرگ‌تر در رقم نخست به ترتیب با بسامد کمتری رخ می‌دهند، و عدد ۹ کمتر از یک بار در هر بیست عدد ظاهر می‌شود.
 
علیرغم اینکه توزیع اعداد یا پدیده‌های طبیعی معمولااز توزیع نرمال تبعیت می‌کنند رقم اول این اهداداعداد از قانون بنفورد تبعیت می‌کنند. به بیان دیگر می‌توان گفت که قانون بنفورد نوع دیگری از نمایش توزیع اعداد است که در آن اگر مجموعه اهدادیاعدادی که رقم اول آنها ۱ و ۲ و ۳ و... است را کنار یکدیگر بگذاریم کل مجموعه را نمایش داده‌ایم.<ref name="Benford1">{{یادکرد وب|عنوان=دانشمند فرانسوی: قانون بنفورد تقلب در انتخابات ایران را ثابت می‌کند |نشانی=http://www.dw-world.de/dw/article/0,,4409069,00.html|تاریخ=۲۹ خرداد ۱۳۸۸|ناشر=صدای آلمان }}</ref> هرگاه که خود عددها به طور [[توزیع لگاریتمی|لگاریتمی]] توزیع شده باشند، این توزیع رقم‌های نخست منطقی خواهد بود. بنابر دلایلی، عددهایی که در سنجش‌های واقعی ثبت می‌شوند، معمولاً توزیع لگاریتمی دارند.
 
<ref name="Benford۱">{{یادکرد وب
|عنوان=دانشمند فرانسوی: قانون بنفورد تقلب در انتخابات ایران را ثابت می‌کند
|نشانی=http://www.dw-world.de/dw/article/0,,4409069,00.html
|تاریخ=۲۹ خرداد ۱۳۸۸
|ناشر=صدای آلمان
}}</ref> هرگاه که خود عددها به طور [[توزیع لگاریتمی|لگاریتمی]] توزیع شده باشند، این توزیع رقم‌های نخست منطقی خواهد بود. بنابر دلایلی، عددهایی که در سنجش‌های واقعی ثبت می‌شوند، معمولاً توزیع لگاریتمی دارند.
 
این قانون به نام [[فرانک بنفورد]] فیزیکدان نامیده شده‌است، هرچند که پیش از آن [[سیمون نیوکام]] در سال [[۱۸۸۱ (میلادی)|۱۸۸۱]] آن را بیان کرده بود.
 
اگر چه قانون بنفورد قطعاً به بسیاری از مجموعه داده‌ها اعمال می‌شود، توضیح علمی آن<ref>Hill, T. P. «The First Digit Phenomenon.» Amer. Sci. ۸۶84, ۳۵۸358-۳۶۳363, ۱۹۹۸1998 </ref> اخیراً و در سال ۱۹۹۸ توسط هیل، ریاضیدان، با استفاده از [[قضیه حد مرکزی|قضایای حد مرکزی]]-گونه داده شده‌است.<ref>[http://mathworld.wolfram.com/BenfordsLaw.html Benford's Law], Wolfram Mathworld </ref>
 
این قانون به ظاهر عجیب در بسیاری از داده‌ها برقرار است، مثلاً در صورتحساب‌های برق، شمارهٔ خیابان‌ها، قیمت سهام، مقدار جمعیت، آمار مرگ‌ومیر، طول رودخانه‌ها، ثابت‌های فیزیک و ریاضیات، و فرایندهایی که از [[توزیع توانی]] پیروی می‌کنند (که در طبیعت بسیار فراوانند). این قانون مستقل از پایه‌ای که عددها در آن بیان می‌شوند برقرار است، هرچند که احتمال تکرار عددها در هر پایه متفاوت از پایه‌های دیگر است. بین آماردانان و دانشمندان علوم سیاسی در مورد اعمال پذیری قانون بنفورد به داده‌های انتخاباتی اختلاف نظر وجود دارد. برخی مانند والتر میبین<ref>Walter R. Mebane, Jr. </ref>، استاد آمار و علوم سیاسی [[دانشگاه میشیگان]] معتقدند که رقم دوم داده‌ها از توزیع بنفورد پیروی می‌کند<ref name="Mebane">{{یادکرد|فصل=|کتاب=|ناشر= |چاپ= |شهر= |کوشش= |ویرایش= |سال=|شابک=|نویسنده=Walter R. Mebane, Jr. |نویسندگان سایر بخش‌ها=|ترجمه=|صفحه= |زبان=en |مقاله= [http://www-personal.umich.edu/~wmebane/note19jun2009.pdf Note on the presidential election in Iran, June ۲۰۰۹] |ژورنال= |نشریه= |تاریخ= |دوره= |شماره= |شاپا=}} Retrieved on {{formatnum:۲۰۰۹-۰۶-۱۵|R}}. </ref>، در حالی که گزارش مرکز کارتر <ref>Carter Center (۲۰۰۵). [http://www.cartercenter.org/documents/2020.pdf Observing the Venezuela Presidential Recall Referendum: Comprehensive Report], Claim 4, p. ۱۳۴ </ref> این دیدگاه را رد می‌کند.
 
این قانون به ظاهر عجیب در بسیاری از داده‌ها برقرار است، مثلاً در صورتحساب‌های برق، شمارهٔ خیابان‌ها، قیمت سهام، مقدار جمعیت، آمار مرگ‌ومیر، طول رودخانه‌ها، ثابت‌های فیزیک و ریاضیات، و فرایندهایی که از [[توزیع توانی]] پیروی می‌کنند (که در طبیعت بسیار فراوانند). این قانون مستقل از پایه‌ای که عددها در آن بیان می‌شوند برقرار است، هرچند که احتمال تکرار عددها در هر پایه متفاوت از پایه‌های دیگر است. بین آماردانان و دانشمندان علوم سیاسی در مورد اعمال پذیری قانون بنفورد به داده‌های انتخاباتی اختلاف نظر وجود دارد. برخی مانند والتر میبین<ref>Walter R. Mebane, Jr. </ref>، استاد آمار و علوم سیاسی [[دانشگاه میشیگان]] معتقدند که رقم دوم داده‌ها از توزیع بنفورد پیروی می‌کند<ref name="Mebane">{{یادکرد|فصل=|کتاب=|ناشر= |چاپ= |شهر= |کوشش= |ویرایش= |سال=|شابک=|نویسنده=Walter R. Mebane, Jr. |نویسندگان سایر بخش‌ها=|ترجمه=|صفحه= |زبان=en |مقاله= [http://www-personal.umich.edu/~wmebane/note19jun2009.pdf Note on the presidential election in Iran, June ۲۰۰۹2009] |ژورنال= |نشریه= |تاریخ= |دوره= |شماره= |شاپا=}} Retrieved on {{formatnum:۲۰۰۹2009-۰۶06-۱۵|R}}15. </ref>، در حالی که گزارش مرکز کارتر <ref>Carter Center (۲۰۰۵2005). [http://www.cartercenter.org/documents/2020.pdf Observing the Venezuela Presidential Recall Referendum: Comprehensive Report], Claim 4, p. ۱۳۴134 </ref> این دیدگاه را رد می‌کند.
{{-}}
== منابع ==
* {{یادکرد-ویکی|پیوند = http://en.wikipedia.org/w/index.php?title=Benford%27s_law&oldid=371026047 |عنوان =Benford's law |زبان =انگلیسی |بازیابی =۵-۸-۲۰۱۰}}
* ویکی‌پدیای انگلیسی:
{{پانویس|چپ‌چین=بله}}
 
{{آمار}}
۱۱٬۴۲۵

ویرایش