ستاره نوترونی: تفاوت میان نسخه‌ها

محتوای حذف‌شده محتوای افزوده‌شده
Keykavoos (بحث | مشارکت‌ها)
جز ویرایش با ابرابزار
Keykavoos (بحث | مشارکت‌ها)
بدون خلاصۀ ویرایش
خط ۵:
برای این که تصور بهتری از یک ستاره نوترونی در ذهنتان بوجود بیاید، می‌توانید فرض کنید که تمام جرم خورشید در مکانی به وسعت یک شهر جا داده شده‌است. یعنی می‌توان گفت یک قاشق از ستاره نوترونی یک میلیارد تن جرم دارد. به اضافه اینکه سرعت چرخش این ستاره‌ها به دور خودشان تا ۷۰۰ دور در ثانیه هم می‌رسد و این چرخش هرگز متوقف یا کندتر نخواهد شد.
 
این ستارگان هنگام انفجار برخی از [[ابرنواختر|ابرنواخترها]] بوجود می‌آیند. پس از انفجار یک ابرنواختر ممکن است به خاطر فشار بسیار زیاد حاصل از [[رمبش]] مواد پخش شده ساختار اتمی همهٔ عناصر شیمیایی شکسته شود و تنها اجزای بنیادی بر جای بمانند.
 
بیشتر دانشمندان عقیده دارند که جاذبه و فشار بسیار زیاد باعث فشرده شدن پروتون‌ها و الکترون‌ها به درون یکدیگر می‌شوند که خود سبب به وجود آمدن توده‌های متراکم نوترونی خواهد شد. عده کمی نیز معتقدند که فشردگی پروتون‌ها و الکترون‌ها بسیار بیش از اینهاست و این باعث می‌شود که تنها [[کوارک|کوارک‌ها]] باقی بمانند. و این [[ستاره کوارکی]] متشکل از کوارکهای بالا و پایین (Up & down quarks)و نوع دیگری از کوارک که از بقیه سنگین تر است خواهد بود که این کوارک تا کنون در هیچ ماده‌ای کشف نشده‌است.
[[پرونده:1997NeutronStar.jpg|thumb]]
از آنجا که اطلاعات در مورد ستارگان نوترونی اندک است در سالهای اخیر تحقیقات زیادی بر روی این دسته از ستارگان انجام شده‌است.
 
در اواخر سال ۲۰۰۲ میلادی.. یک تیم تحقیقاتی وابسته به [[ناسا]] به سرپرستی خانم J. Cotton مطالعاتی را در مورد یک ستاره نوترونی به همراه یک [[ستاره همدم]] به نام [[۰۷۴۸۶۷۶ EXO]] انجام داد. این گروه برای مطالعهٔ این [[ستاره دو تایی]] که در فاصلهٔ ۳۰۰۰۰ سال نوری از زمین قرار دارد. از یک ماهواره مجهز به [[اشعه ایکس]] بهره برد. (این ماهواره متعلق به [[آژانس فضایی اروپاستاروپا]] است و XMMX- ray Multi Mirror نیوتن نام دارد)
 
هدف این تحقیق تعیین ساختار ستاره نوترونی با استفاده از تأثیرات جاذبهٔ زیاد ستاره بر روی نور بود.
 
با توجه به نظریهٔ [[نسبیت عام]] نوری که از یک میدان جاذبهٔ زیاد عبور کند.کند، مقداری از انرژی خود را از دست می‌دهد. این کاهش انرژی به صورت افزایش طول موج نور نمود پیدا می‌کنند. به این پدیده [[انتقال به قرمز]] می‌گویند.
 
این گروه برای نخستین بار انتقال به قرمز نور گذرنده از اتمسفر بسیار بسیار نازک یک ستاره نوترونی را اندازه گیری کردند. جاذبهٔ عظیم ستاره نوترونی باعث انتقال به قرمز نور می‌شود که میزان آن به مقدار جرم ستاره و شعاع آن بستگی دارد. تعیین مقادیر جرم و شعاع ستاره می‌تواند محققان را در یافتن فشار درونی ستاره یاری کند. با آگاهی از فشار درونی ستاره منجمان می‌توانند حدس بزنند که داخل ستاره نوترونی فقط متشکل از نوترونهاست یا ذرات ناشناختهٔ دیگر را نیز شامل می‌شود.
 
این گروه تحقیقاتی پس از انجام مطالعات و آزمایشات خود دریافتند که این ستاره تنها باید از نوترون تشکیل شده باشد. و در حقیقت طبق مدلهای کوارکیکوارکی، ذره دیگری جز نوترون در آن وجود ندارد.
 
در حین این مطالعه و برای بررسی تغییرات طیف پرتوهای ایکسایکس، یک منبع پرقدرت اشعه ایکس لازم بود. انفجارهای هسته‌ای (Thermonuclear Blasts) که بر اثر جذب ستاره همدم توسط ستاره نوترونی ایجاد می‌شود.. همان منبع مورد نیاز برای تولید اشعهٔ ایکس بود. (ستاره نوترونی به سبب جرم زیاد و به طبع آن.. جاذبهٔ قوی..قوی، مواد ستاره همدم را به سوی خود جذب می‌کرد.) طیف پرتوهای Xایکس تولید شده.. پس از عبور از جو بسیار کم ستاره نوترونی که از اتم‌های آهن فوق یونیزه شده تشکیل شده بود توسط ماهواره XMM-نیوتن مورد بررسی قرار گرفتند.
 
نکتهٔ قابل توجه این است که در آزمایشهای قبلی که توسط گروه دیگری انجام شده بود تحقیقات بر روی ستاره‌ای متمرکز بود که میدان مغناطیسی بزرگی داشت و چون میدان مغناطیسی نیز بر روی طیف نور تأثیر گذار است تشخیص اثر نیروی جاذبهٔ ستاره بر روی طیف نور به طور دقیق امکان پذیر نبود. ولی ستاره موردنظرمورد نظر در پروژه بعدی (که آن را توضیح دادیم) دارای میدان مغناطیسی ضعیفی بود که اثر آن از اثر نیروی جاذبه قابل تشخیص بود.
 
== منابع ==