افزاره بارجفت‌شده: تفاوت میان نسخه‌ها

محتوای حذف‌شده محتوای افزوده‌شده
رده:تراشه برداشته شد؛ رده:مدارهای مجتمع افزوده شد با استفاده از وپ:رده‌ساز
JYBot (بحث | مشارکت‌ها)
جز ربات ردهٔ همسنگ (۲۳) +مرتب+تمیز(۳.۸): + رده:تراشه
خط ۱:
[[پرونده:CCD.jpg|thumbبندانگشتی|leftچپ|300px|یک دستگاه جفت‌کنندهٔ بار با کاربرد ویژه برای استفاده در تصویرسازی [[فرابنفش]] که در بسته‌بندی با لبه‌های سیم‌بندی‌شده قرار داده شده‌است.]]
'''دستگاه جفت‌کنندهٔ بار'''<ref>{{یادکرد وب
| عنوان=آشکارسازی و جبران لرزش تصویر دوربین ‏‎CCD‎‏ ‏‎(charge coupled device)‎‏ ناپایدار در ردیابی ویدیویی یک هدف متحرک موجود برسطح دریا
خط ۵:
| نشانی=http://dbase.irandoc.ac.ir/00628/00628328.htm
| تاریخ بازدید= ۷ آوریل ۲۰۰۸
}}</ref> (CCD) یک [[حسگر تصویربرداری]] است که از یک مدار یکپارچه تشکیل شده که شامل [[آرایه|آرایه‌ای]] از اتصالات یا [[خازن|خازنهای]]‌های حساس متصل می‌شود. این دستگاه را دستگاه رنگ‌بردار (Color-Capture Device) هم می‌نامند.
[[پرونده:CCD line sensor.JPG|thumbبندانگشتی|یک سنسور CCD یک بعدی موجود در دستگاه فکس.]]
نام انگلیسی دستگاه جفت‌کنندهٔ بار یعنی CCD کوتاه‌شدهٔ ''charge-coupled device'' است. CCD قلب دوربین‌های نظارت تصویری است. CCD یک تکنولوژی آنالوگ است که تصاویری بسیار شفاف و با رزولوشن بالا را ارائه میدهد و در نور کم هم تصاویر بسیار خوبی نمایش می دهد و کمی بیشتر از سنسورهای CMOS برق مصرف می کند(در حدود ۹ تا ۱۲ ولت).
 
از این دستگاه در ساخت دوربین‌های تصویربرداری و دوربین‌های عکاسی دیجیتال استفاده می‌شود.
خط ۱۳:
ساختار اولیه CCD در سال ۱۹۶۹ توسط بویل (Boyle) و اسمیت (Smith) از آزمایشگاههای بل پیشنهاد شد. این ساختار متشکل از یک سری الکترود فلزی به صورت آرایه‌ای از خازنهای MOS بود، که هر کدام به یکی از سه الکترود موجود در یک سطر متصل شده‌اند. این دو تن به‌خاطر این ابداع، برنده نیمی از جایزه نوبل فیزیک سال ۲۰۰۹ شدند.اولین CCD مربوط به تصویر برداری به فرمت ۱۰۰ * ۱۰۰ پیکسل، در سال ۱۹۷۴ توسط شرکت Faichild Electronics تولید گردید. در سال بعد این وسیله در دوربین‌های تلویزیونی برای رسانه‌های تجاری و بعدها در تلسکوپ‌ها و وسایل تصویر برداری پزشکی مورد استفاده قرار گرفت.
 
[[پرونده:CCD charge transfer animation.gif|thumbبندانگشتی|250px|rightراست|.]]
 
 
 
[[پرونده:CCD charge transfer animation.gif|thumb|250px|right|.]]
 
== اساس کار ==
 
اساس کار CCD ذخیره و پس‌گیری بار به شکل دینامیکی در رشته‌ای از خازنهای MOS (در این قطعه از سیلسیوم به عنوان نیم رسانا، اکسید سیلسیوم به عنوان عایق و آلومینیوم برای الکترود گیت استفاده می‌شود. به این علت به MOS معروف هستند.) است. یک خازن MOS روی بستری از نوع P قرار می‌گیرد، و به آن یک پالس مثبت و بزرگ وارد می‌شود. یک پتانسیل در زیر الکترود گیت بوجود می‌آید.در حقیقت پتانسیل سطحی یک چاه پتانسیل را تشکیل می‌دهد که می‌تواند برای ذخیره بار بکار می‌رود. اگر پالس مثبت در مدت زمانی به اندازه کافی طو لانی وارد شده باشد، الکترونها در سطح انباشته شده و شرایط وارونگی حالت پایدار برقرار می‌شود. منبع این بارها از الکترونهای تولید شده با گرما در محل یا نزدیک سطح است. <br /><br />{{سخ}}{{سخ}}در حقیقت شرایط وارونگی نشان دهنده ظرفیت چاه برای ذخیره بار است. زمان لازم برای پر کردن چاه بصورت گرمایی، زمان آرامش گرمایی نامیده می‌شود. برای مواد خوب زمان آرامش گرمایی می‌تواند بسیار طولانی‌تر از زمان ذخیره بار موجود در عملکرد CCD باشد. آنچه در این روند مورد نیاز است، روش ساده برای عبور سریع و بدون اتلاف بار از یک چاه پتانسیل به چاه مجاور می‌باشد. در این صورت می‌توان بسته‌های بار را به شکل دینامیکی منتقل و جمع آوری کرد، تا عملیات مختلف الکترونیکی را انجام دهند.
 
== معماری ==
 
=== Full frame CCD: ===
Full Frame معروفترین معماری برای CCDهای استفاده شده در طیف نمائی‌های چندگانه و کاربردهای تصویر برداری است. Full Frame تمامی ناحیه CCD را برای فتونهای ورودی در بازه تابش نور بکار می گیرد. در هنگام باز خوانی، بار الکتریکی در آرایه‌های CCD به طور متوالی شیفت داده می شوند و جهت جلوگیری از لکه دار شدن یا کشیده شدن تصویر، استفاده از یک شاتر(۲) الزامی است. در صورتیکه زمان تابش نور بسیار بلندتر از سرعت باز خوانی باشد، لکه دار شدن تصاویر بسیار کم می شود. Full Frame دارای ۱۰۰%[http://en.wikipedia.org/wiki/Fill_factor fill factor] است، به این معنی که ۱۰۰% مساحت هر پیکسل برای آشکارسازی فتونها در لحظه تابش نور استفاده می شود. از آنجائیکه پیکسل‌ها معمولاً مربع هستند تخریب تصویر وجود ندارد. این وسایل می توانند اندازهٔ پیکسلی در رنج ۶.۸ میکرون مربع تا ۲۶ میکرون مربع را در فرمت ۵۱۲×۵۱۲ تا ۳k×۴k را فراهم کنند. CCDهای Full Frame می توانند برای تابش از پشت یا روبرو نیز طراحی شوند.
در CCDهای تابش از روبرو، نور می بایست از لایه دروازهٔ پلی سیلیکونی (لایهٔ تخلیه) در بالای لایه سیلیکونی حساس به نور عبور کند. ساختار دروازه ای برای فرم دهی پیکسل در CCD لازم است. به هر حال تغییر در ضرایب شکست بین محیط پلی سیلیکون و سیلیکون باعث می‌شود قسمتی از طیف نور با طول موج کوتاهتر از سطح CCD منعکس شود.
 
=== Frame transfer CCD: ===
معماری این نوع CCD برای مواقعی است که سرعت بالا و بازه تابش نور کمی را در حدود صد یا هزار میکروثانیه مد نظر دارید که البته با شاترهای معمولی قابل دسترسی نیست.Frame Transfer شامل یک رجیستر موازی است که به دو قسمت تقسیم شده است. نور در قسمت بالائی این رجیستر موسوم به آرایه تصویر متمرکز می شود. ناحیه دوم موسوم به آرایه ذخیره نیز مقدار آرایه تصویر را گرفته و به عبارتی با آن برابر می‌شود و یک ماسک کدر بر روی ناحیه موقتی عکس گذاشته می شود. یک بار که آرایه تصویر در معرض نور قرار گرفت، سیگنال به سرعت به آرایه ذخیره شیفت داده می شود. در هنگامیکه آرایه ذخیره خوانده می شود، آرایه تصویر می تواند سیگنال دیگری را دریافت کند. پس علیرغم غیاب یک شاتر پرسرعت، Frame Transfer بطور پیوسته کار می کند.Frame Transfer هائی که از روبرو در معرض نور قرار می گیرند هنوز مشکل Full Frameها را دارند یعنی مقدار کم QE در بازهٔ طیف مرئی با QE بسیار پائین در UV.خاصیت هائی نظیر CCDهای از پشت در معرض تابش، کارکرد بدون شاتر، سرعت فریم نسبتاً بالا و QE بالا از مزایای کاربردی طراحی Frame Transfer است.
 
=== Interline CCD: ===
 
معماری Interline در جستجوی زیاد برای سرعت طراحی شد. این نوع CCD برای کاربردهای پرسرعت VIS-NIR با شدت سیگنال متوسط تا زیاد، ایده آل است. به هر حال بدست آوردن سرعت بالا و کار پیوسته در این نوع CCD با هزینه همراه است و عواقب آن کاهش حساسیت مخصوصاً در محدودهٔ UV است.Interline شامل آرایه هائی کشیده از دیودهای حساس نوری است که به طور الکتریکی به یک ذخیره کنندهٔ CCD در پائین ناحیه پوشیده شده متصل هستند. نواحی پوشیده شده و نواحی حساس به نور به طور متناوب در طول محورهای عمودی CCD گسترده شده اند. مشخصه QE ناحیه پیکسل دیود، عالی است ولی به هر حال فقط ۲۵% از ناحیه CCD دارای دیودهای فعال است و این به معنی fill factor ۲۵% است. در نتیجه مقدار فتوالکترونها در واحد مساحت کاهش یافته اند.
 
=== Interline CCD: ===
معماری Interline در جستجوی زیاد برای سرعت طراحی شد. این نوع CCD برای کاربردهای پرسرعت VIS-NIR با شدت سیگنال متوسط تا زیاد، ایده آل است. به هر حال بدست آوردن سرعت بالا و کار پیوسته در این نوع CCD با هزینه همراه است و عواقب آن کاهش حساسیت مخصوصاً در محدودهٔ UV است.Interline شامل آرایه هائی کشیده از دیودهای حساس نوری است که به طور الکتریکی به یک ذخیره کنندهٔ CCD در پائین ناحیه پوشیده شده متصل هستند. نواحی پوشیده شده و نواحی حساس به نور به طور متناوب در طول محورهای عمودی CCD گسترده شده اند. مشخصه QE ناحیه پیکسل دیود، عالی است ولی به هر حال فقط ۲۵% از ناحیه CCD دارای دیودهای فعال است و این به معنی fill factor ۲۵% است. در نتیجه مقدار فتوالکترونها در واحد مساحت کاهش یافته اند.
 
== [http://www.princetoninstruments.com/Uploads/Princeton/Documents/Library/UpdatedLibrary/Hybrid_Sensor_Technology.pdf Hybrid Sensor Technology] ==
 
این نوع CCD مزایای آشکارسازهای CCD و CMOS را برای یک آشکارساز اختصاصی طیف سنج با حساسیت و سرعت‌های غیر منطبق فراهم می کند.در CCDهای طیف نمای قدیمی، فتونهای نوری به الکترون تبدیل می شوند و در آرایه ای دو بعدی از پیکسل‌ها ذخیره می شوند. الکترونهای ذخیره شده هر پیکسل به طور عمودی به رجیستر آخر شیفت داده می شوند که به آن رجیستر افقی گفته می شود. هر پیکسل از این رجیستر تمامی الکترونهای یک ستون را در فرآیندی به نام binning در خود جمع می کند. سپس الکترونهای جمع شده در رجیستر افقی به صورت افقی به گره خروجی شیفت داده می شوند، در آنجا خوانده شده و به سیگنالهای ولتاژ تبدیل می شوند.سنسورهای CMOS نیز در فرآیندی شبیه به CCDها فتونها را تبدیل می کنند و تنها تفاوت در معماری و خواندن است. در وسایل CMOS، هر پیکسل شامل یک مدار باز خوانی است که مقدار فضای پیکسل را اشغال می کند. این موضوع باعث کاهش fill factor و حساسیت می‌شود که روشنائی از پشت CMOS را غیر عملی می سازد. از سوئی دیگر این مدارات الکترونیکی مزایائی نیز دارند که از آن جمله می توان به دسترسی تصادفی به هر پیکسل، باز خوانی بدون تخریب (بی نقص) و بسیاری مزایای دیگر اشاره نمود. CMOS شرایطی را فراهم می‌کند که الکترونیک آنالوگ و دیجیتال در یک چیپ باشند که باعث کاهش اندازه و هزینه می شود. چند مدار بازخوانی و مدار الکترونیکی پردازشگر می توانند به یک پیکسل CMOS مرتبط شوند تا موجب کارکرد موازی شوند. این عمل باعث تحصیل سرعت بالاتر در مقایسه با CCDها می‌شود که در آنها عمل بازخوانی، یک فرآیند زنجیره ای طولانی است. تکنولوژی سنسور مختلط(HST) بازدهی وسایل CCD را به قابلیت پردازش آنالوگ و دیجیتال CMOS پیوند می دهد. مشابه CCDهای سنتی ، CCD فتونها را در گودالهای پتانسیل خود دریافت و تبدیل می کند. CCD می تواند از مقابل و از پشت، نور را دریافت کند که این امر موجب ایجاد حساسیت بالاتری نسبت به CMOSهای سنتی می شود. بار الکتریکی هر پیکسل توسط رجیسترهای عمودی به رجیستر افقی انتقال می یابد که این عمل همانند CCDهای قدیمی است و در عوض در این مرحله به جای شیفت بارها به طور افقی در رجیستر افقی، بار جمع شده به یک CMOS آشکار ساز مختلط جدید انتقال می دهد.تکنولوژی ساخت بدلیل اتصال چیپ‌های سیلیکون CCD به سیلیکون CMOS، بی نیاز از تقویت کننده‌های روی چیپ است. پس از اتمام انتقال، بار الکتریکی توسط یک تقویت کننده با نویز پائین ((LNA(۱) تقویت می شود. برای دستیابی به کارائی بالا و بدون نویز، تقویت کننده در فرکانسهای در محدوده KHz کار می کند. به هر حال از آنجائیکه بازخوانی به زیر شبکه هائی تقسیم می‌شود که هر یک دارای خروجی مختص به خود و متصل به یک مدار تقویت کننده مخصوص CMOS هستند، نتیجه کلی، خروجی با سرعتی بالا را فراهم می کنند.
 
== کاربرد در ستاره شناسی ==
 
با توجه به [http://en.wikipedia.org/wiki/Quantum_efficiency راندمان بالای کوانتوم] در CCDها، خطی بودن خروجی ها، سهولت استفاده در مقایسه با صفحات عکاسی، و بسیاری دلیل دیگر ، CCDها به سرعت توسط ستاره شناسها برای تقریبا تمامی کاربردهای UV-to-Infrared مورد استفاده قرار گرفته اند. نویز حرارتی و اشعه‌های کیهانی ممکن است موجب تغییر پیکسل در آرایه‌های CCDها شود. برای مقابله با این آثار ستاره شناسان چندین بار CCDها را با شاتر باز و بسته در ‎معرض اشعه قرار میدهند. به طور خاص، تلسکوپ [http://en.wikipedia.org/wiki/Hubble_Space_Telescope Hubble]، یک سری مراحل پیشرفته را برای تبدیل داده‌های خام CCDها به عکسهای مفید انجام میدهد.
دوربین‌های CCDاستفاده شده در[http://en.wikipedia.org/wiki/Astrophotography Astrophotography ] معمولاً نیازمند قاب‌های محکم و سکوهای تصویر برداری بسیار سنگین هستند تا بتوانند با لرزش‌های ناشی از جریانهای باد و دیگر منابع، مقابله کنند.
برای گرفتن عکسهای با زمان طولانی باز بودن دریچه دوربین، از کهکشان‌ها و سحابی‌ها، ستاره شناسان معمولاً از سیستم‌های هدایت خودکاراستفاده میکنند .
سطر ۴۸ ⟵ ۴۳:
یکی از کاربردهای جالب CCDها در زمینه نجوم، که Drift-Scanning نامیده می‌شود، استفاده از CCDها برای تبدیل یک تلسکوپ ثابت به تلسکوپی است که بتواند حرکت آسمان را دنبال و ردیابی کند.
[http://en.wikipedia.org/wiki/Sloan_Digital_Sky_Survey Sloan Digital Sky Survey] یکی از معروف‌ترین نمونه‌های این نوع است.
علاوه بر ستاره شناسی، CCDها در [http://en.wikipedia.org/wiki/Monocromator Monocromator ]‌ها،ها، [http://en.wikipedia.org/wiki/Spectrometer Spectrometer ]‌ها،ها، [http://en.wikipedia.org/wiki/N-Slit_interferometer N-Slit interferometer]‌هاها استفاده میشوند.
 
== دوربین‌های رنگی ==
 
هر CCD از میلیونها سلول بنام فتوسایت یا فتودیود تشکیل شده است. این نقاط در واقع سنسورهای حساس به نوری هستند که اطلاعات نوری را به یک شارژ الکتریکی تبدیل می‌نمایند.وقتی اجزای نور که فتون نامیده می‌شود وارد بدنه سیلیکون فتوسایت می شود، انرژی کافی برای آزادسازی الکترونهایی که با بار منفی شارژ شده اند ایجاد می گردد. هر چه نور بیشتری وارد فتوسایت شود، الکترونهای بیشتری آزاد می شود. هر فتوسایت دارای یک اتصال الکتریکی می‌باشد که وقتی ولتاژی به آن اعمال می شود، سیلیکون زیر آن پذیرای الکترونهای آزاد شده می‌شود و همانند یک خازن برای آن عمل می کند. بنابر این هر فتوسایت دارای یک شارژ ویژه خود می‌باشد که هر چه بیشتر باشد، پیکسل روشنتری را ایجاد می کند. مرحله بعدی در این فرآیند بازخوانی و ثبت اطلاعات موجود در این نقاط است. وقتی که شارژ به این نقاط وارد و خارج می شود، اطلاعات درون آنها حذف می‌شود و از آنجایی که شارژ هر ردیف با ردیف دیگر کوپل می شود، مثل اینست که اطلاعات هر ردیف پشت ردیف قبلی چیده شود.
[[پرونده:Ccd-sensor.jpg|thumbبندانگشتی|rightراست| CCD-Colorsensor.]]
 
سپس سیگنال‌ها در حد امکان بدون نویز وارد تقویت کننده شده و سپس وارد ADC می شوند. فتوسایت‌های روی یک CCD فقط به نور حساسیت نشان می دهند، نه به رنگ. رنگ با استفاده از فیلترهای قرمز – سبز و آبی که روی هر پیکسل گذارده شده است شناسایی می شود. برای اینکه CCD از چشم انسان تقلید کند، نسبت فیلترهای سبز دو برابر فیلترهای قرمز و آبی است. این بخاطر اینست که چشم انسان به رنگهای زرد و سبز حساس تر است. چون هر پیکسل تنها یک رنگ را شناسایی می کند، رنگ واقعی (True Color) با استفاده از متوسط گیری شدت نور اطراف پیکسل که به میان یابی رنگ مشهور است، ایجاد می شود.جدیدا فوجی فیلم در طراحی CCD دست به ابداع جالبی زده است. این شرکت بجای استفاده از آرایش مربعی برای فتوسایت ها، از فتوسایت‌های کاملا متفاوت هشت ضلعی بزرگتری که در ردیفهایی با زاویه ۴۵ درجه مرتب شده اند استفاده کرده است. با این کار مشکل نویزهای سیگنال که برای فشردگی فتوسایتها بر روی CCD محدودیت ایجاد می کرد حل شده است. با این کار رنگهایی واقعی تر و محدوده دینامیکی وسیعتر و حساسیت به نور بالاتر به دست می آید که نتیجه آن عکسهای دیجیتالی شارپ تر و با رنگهای جذاب تر می باشد. از سنسورهای CCD بیشتر در دوربینهای Outdoor استفاده می‌شود .
 
== منابع ==
== منبع ==
<small>
* ویکی‌پدیای انگلیسی، نسخهٔ ۱۲ مارس ۲۰۰۷.
* [http://daneshnameh.roshd.ir دانشنامه رشد]{{پانویس}}</small>
 
== پیوند به بیرون ==
== پیوندهای خارجی ==
{{ویکی‌انبار-رده|CCD}}
* [http://www.jyi.org/volumes/volume3/issue1/features/peterson.html Journal Article On Basics of CCDs]
سطر ۷۳ ⟵ ۶۶:
* [http://www.dalsa.com/markets/ccd_vs_cmos.asp CCD vs. CMOS technical comparison]
* [http://public.fotki.com/ROBERT1010/scitech/photosensor_array.html Micrograph of the photosensor array of a webcam.]
 
{{عکاسی}}
 
{{عکاسی-خرد}}
 
{{عکاسی}}
[[رده:اختراعات آمریکایی]]
[[رده:مدارهای مجتمع]]
[[رده:تصویربرداری نجومی]]
[[رده:ادوات الکترونیک]]
[[رده:تراشه]]
[[رده:تصویربرداری نجومی]]
[[رده:مدارهای مجتمع]]
 
{{Link GA|de}}
 
[[ar:جهاز مزدوج الشحنة]]
[[bg:CCD]]
[[bn:চার্জ কাপল্‌ডকাপল্ড ডিভাইস]]
[[ca:Sensor CCD]]
[[cs:Charge-coupled device]]