انرژی تاریک: تفاوت میان نسخه‌ها

محتوای حذف‌شده محتوای افزوده‌شده
جز اصلاح نویسه نادرست با استفاده از AWB
Rezabot (بحث | مشارکت‌ها)
جز ربات ردهٔ همسنگ (۲۶) +املا+تمیز (۱۲.۵ core): + رده:انرژی (فیزیک)
خط ۲:
 
[[پرونده:DarkMatterPie.jpg|راست|بندانگشتی|270 px|سهم انرژی تاریک و [[ماده تاریک|مادّهٔ تاریک]] از کل جهان]]
در [[کیهان‌شناسی]]، '''انرژی تاریک''' نوع ناشناخته‌ای از [[انرژی]] است که همهٔ فضا را در بر می‌گیرد و [[قانون هابل|سرعت انبساط جهان]] را می‌افزاید.<ref>Peebles, P. J. E. and Ratra, Bharat (2003). "The cosmological constant and dark energy". Reviews of Modern Physics 75 (2): 559–606. arXiv:astro-ph/0207347. Bibcode:2003RvMP...75..559P. doi:10.1103/RevModPhys.75.559</ref> انرژی تاریک مقبولترین فرضیه برای توضیح‌دادن مشاهدات اخیر است که می‌گویند جهان با آهنگ رو به افزایشی (با [[شتاب]]) منبسط می‌شود. در [[مدل استاندارد کیهان‌شناسی]] بنابر [[هم‌ارزی جرم-انرژی]]، جهان شامل حدود ۲۶٫۸٪ ماده تاریک،۶۸٫۳٪ انرژی تاریک (در مجموع ۹۵٫۱٪) و ۴٫۹٪ مادهٔ معمولی است.<ref>Ade, P. A. R. ; Aghanim, N. ; Armitage-Caplan, C. ; et al. (Planck Collaboration) (31 March 2013). "Planck 2013 Results Papers". Astronomy and Astrophysics (submitted). arXiv:1303.5062. Bibcode:2013arXiv1303.5062P</ref><ref>Ade, P. A. R. ; Aghanim, N. ; Armitage-Caplan, C. ; et al. (Planck Collaboration) (22 March 2013). "Planck 2013 results. I. Overview of products and scientific results – Table 9.". Astronomy and Astrophysics (submitted). arXiv:1303.5062. Bibcode:2013arXiv1303.5062P</ref><ref>"First Planck results: the Universe is still weird and interesting"</ref><ref>Sean Carroll, Ph.D. , Cal Tech, 2007, The Teaching Company, Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 page 46, Accessed Oct. 7, 2013, "...dark energy: A smooth, persistent component of invisible energy, thought to make up about 70 percent of the current energy density of the universe. Dark energy is known to be smooth because it doesn't accumulate preferentially in galaxies and clusters..."</ref> باز هم بر اساس هم‌ارزی جرم-انرژی، چگالی انرژی تاریک بسیار کم است. در منظومه شمسی، تقریباتقریباً فقط ۶ تن انرژی تاریک درون شعاع مدار پلوتو یافت می‌شود. با این حال، انرژی تاریک بیشتر جرم-انرژی جهان را تشکیل می‌دهد، زیرا به طور یکنواخت در فضا پخش شده است.<ref>http://hyperphysics.phy-astr.gsu.edu/hbase/astro/dareng.html</ref>
 
دو شکل برای انرژی تاریک ارائه شده است. یکی [[ثابت کیهان شناسی]]، یک چگالی انرژی ثابت که بطور همگن جهان را پر می‌کند،<ref>Carroll, Sean (2001). "The cosmological constant". Living Reviews in Relativity 4. Retrieved 2006-09-28.</ref> و دیگری [[نظریه میدان اسکالر|میدانهای اسکالر]]، کمیت‌هایی دینامیکی که چگالی انرژی آنها می‌تواند در فضا و زمان تغییر کند. بخشهایی از میدانهای اسکالر که در فضا ثابت هستند هم معمولامعمولاً در ثابت کیهان شناسی شمرده می‌شوند. ثابت کیهانشناسی می‌تواند به گونه‌ای فرمول بندی شود که [[انرژی خلا]] باشد. میدانهای اسکالری که در فضا تغییر می‌کنند به سختی می‌توانند از ثابت کیهان شناسی بازشناخته شوند، زیرا تغییرات ممکن است فوق‌العاده آهسته باشد.
 
اندازه‌گیری‌های دقیقی از انبساط جهان برای فهمیدن اینکه نرخ انبساط چگونه در طول زمان تغییر می‌کند، لازم است. در [[نسبیت عام]]، سیر تکاملی انبساط جهان بوسیلهٔ [[معادلهٔ حالت]] کیهانی (رابطهٔ بین دما، فشار و ترکیب ماده، انرژی و چگالی انرژی خلا در هر ناحیه از فضا) فرمول بندی می‌شود. امروزه، اندازه‌گیری معادلهٔ حالت انرژی تاریک یکی از بزرگترین تلاشهای کیهان شناسی رصدی است.
خط ۱۷:
انرژی تاریک بسیار [[همگن]] در نظر گرفته می‌شود، خیلی چگال نیست و معلوم نیست با کدام یک از [[نیروهای بنیادی]] بجز [[گرانش]] برهم کنش می‌کند. هم چنین به علت رقیق بودن، در آزمایشهای آزمایشگاهی قابل شناسایی نیست. انرژی تاریک، با تشکیل ۶۸٪ چگالی جهان، می‌تواند تاثیر عمیقی بر جهان بگذارد؛ فقط به این خاطر که بطور یکنواخت جایی را پر می‌کند که در غیر اینصورت فضای خالی محسوب می‌شد. دو مدل راهنما، [[ثابت کیهان شناسی]] و [[کوینتسنس]] {{به انگلیسی| quintessence}} هستند. هر دو مدل این ویژگی مشترک را دارند که انرژی تاریک باید دارای فشار منفی باشد.
 
'''== تاثیر انرژی تاریک: فشار کوچک، ثابت و منفی خلأ'''{{سر خط}}==
 
مستقل از طبیعت واقعی اش، انرژی تاریک باید یک فشار قوی منفی (که بصورت دافعه عمل کند) داشته باشد، تا بتواند [[شتاب]] مشاهده شدهٔ [[انبساط جهان]] را توضیح دهد.
بر اساس نسبیت عام، فشاری که در میان ماده است، درست مانند چگالی جرمی در جاذبهٔ گرانشی آن ماده بر سایر اجسام سهیم است. دلیل این اتفاق این است که کمیت فیزیکی که باعث ایجاد تاثیرات گرانشی می‌شود، [[تانسور ضربه-انرژی]] است که هم چگالی انرژی (یا جرم) ماده و هم فشار و گرانروی آن را شامل می‌شود.{{سر خطسخ}}
در [[متریک فریدمان-لومتر-رابرتسون-واکر|متریک رابرتسون واکر]]، می‌توان نشان داد که یک فشار ثابت، قوی و منفی در تمام جهان، در صورتی که جهان اکنون در حال انبساط باشد، باعث شتاب افزایشی انبساط، و اگر جهان در حال انقباض باشد، باعث شتاب کاهشی انقباض می‌شود. به طور دقیقتر، اگر معادلهٔ حالت جهان به گونه‌ای باشد که <math>\! w<-1/3</math>، مشتق دوم فاکتور مقیاس جهان، <math>\ddot{a}</math>، مثبت است. ([[معادلات فریدمان]] را ببینید){{سر خطسخ}}
این تاثیر انبساط تند شونده گاهی «دافعهٔ گرانشی» خوانده می‌شود، که یک عبارت رنگارنگ اما احتمالااحتمالاً گیج کننده است. در حقیقت، یک فشار منفی تاثیری بر برهم کنش گرانشی میان اجرام - که جاذبه باقی می‌ماند- ندارد؛ ولی در عوض، سیر تکاملی جهان در مقیاس کیهانشناسی را تغییر می‌دهد که با وجود جاذبه در میان اجرام حاضر در جهان، موجب انبساط تندشوندهٔ جهان می‌شود.{{سر خطسخ}}
شتاب، به سادگی تابعی از چگالی انرژی تاریک است. انرژی تاریک پایا است: چگالی اش ثابت می‌ماند (به طور تجربی، بین فاکتور۱:۱۰). یعنی با انبساط جهان، انرژی تاریک رقیقتر نمی‌شود.
 
== شواهد مبنی بر وجود ==
''' ابرنواختر'''{{سر خطسخ}}
در سال ۱۹۹۸، رصدهای منتشر شده از [[ابرنواختر نوع Ia]] توسط [[گروه جستجوی ابرنواختر در قرمزگرایی زیاد]]<ref>Adam G. Riess et al. (Supernova Search Team) (1998). "Observational evidence from supernovae for an accelerating universe and a cosmological constant". Astronomical J. 116 (3): 1009–38. arXiv:astro-ph/9805201. Bibcode:1998AJ....116.1009R. doi:10.1086/300499.</ref> که در سال ۱۹۹۹ بوسیله [[پروژه کیهانشناسی ابرنواختری]]<ref>Perlmutter, S. et al. (The Supernova Cosmology Project) (1999). "Measurements of Omega and Lambda from 42 high redshift supernovae". Astrophysical Journal 517 (2): 565–86. arXiv:astro-ph/9812133. Bibcode:1999ApJ...517..565P. doi:10.1086/307221.</ref> دنبال شد، پیشنهاد داد که انبساط جهان تندشونده است.<ref>The first paper, using observed data, which claimed a positive Lambda term was Paal, G. et al. (1992). "Inflation and compactification from galaxy redshifts?". ApSS 191: 107–24. Bibcode:1992Ap&SS.191..107P. doi:10.1007/BF00644200.</ref> جایزه نوبل فیزیک در سال ۲۰۱۱ برای این کار به [[سال پرلموتر]]، [[برایان اشمیت]] و [[آدم ریس]] اهدا شد.<ref>"The Nobel Prize in Physics 2011". Nobel Foundation. Retrieved 2011-10-04.</ref><ref>The Nobel Prize in Physics 2011. Perlmutter got half the prize, and the other half was shared between Schmidt and Riess.</ref>{{سر خطسخ}}
از آن زمان، این مشاهدات توسط چندین منبع مستقل تایید شده است. اندازه‌گیری‌های [[تابش زمینه کیهانی]]، [[لنز گرانشی]] و [[ساختار بزرگ مقیاس]] کیهان به همراه اندازه گیریهای پیشرفته ابرنواخترها با مدل [[لامبدا-سی دی ام]] سازگار بوده‌اند.<ref>Spergel, D. N. et al. (WMAP collaboration) (March 2006). Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology.</ref> برخی افراد می‌گویند تنها شواهد وجود انرژی تاریک مشاهداتی از اندازه‌گیری‌های دوردست و قرمزگرایی مربوطه است. ناهمسانگردی‌های تابش پس زمینهٔ کیهانی و نوسانات آکوستیک مواد باریونی تنها مشاهداتی هستند که قرمزگرایی‌ها از آنچه با مدل جهان «غباری» فریدمان و ثابت هابل اندازه‌گیری شدهٔ محلی انتظار می‌رفت، بزرگترند.<ref>Durrer, R. (2011). "What do we really know about dark energy?". Philosophical Transactions of the Royal Society A 369: 5102–5114. arXiv:1103.5331. Bibcode:2011RSPTA.369.5102D. doi:10.1098/rsta.2011.0285</ref>{{سرخطسخ}}
ابرنواخترها برای کیهان شناسی مفیدند، زیرا آنها [[شمع استاندارد]]های بسیار خوبی در فواصل کیهانی هستند. آنها باعث می‌شوند تاریخ انبساط جهان بتواند با نگاه به رابطهٔ فاصله تا یک شی و [[قرمزگرایی]] آن، که می‌گوید دارد با چه سرعتی از ما دور می‌شود، اندازه‌گیری شود. این رابطه، بنابر [[قانون هابل]] خطی است. اندازه‌گیری قرمزگرایی نسبتانسبتاً آسان است، اما پیدا کردن فاصله تا یک شی کار دشوارتری است. معمولامعمولاً اخترشناسان از شمع‌های استاندارد استفاده می‌کنند: اشیایی که روشنایی ذاتی آنها، [[قدر مطلق (ستاره‌شناسی)|قدر مطلق]] آنها، معلوم است. این موضوع اندازه‌گیری فاصله تا شی را از روی روشنایی مشاهده شده آن، [[قدر ظاهری]]، امکان‌پذیر می‌سازد. ابرنواخترهای نوع Ia بخاطر روشنایی زیادشان، بهترین شمع‌های استاندارد شناخته شده در فواصل کیهانی هستند.{{سرخطسخ}}
رصدهای اخیر از ابرنواخترها سازگار با جهانی ساخته شده از ۷۱٫۳٪ انرژی تاریک و ۲۷٫۴٪ ترکیب ماده تاریک و ماده باریونی هستند.<ref>Kowalski, Marek; Rubin, David (October 27, 2008). "Improved Cosmological Constraints from New, Old and Combined Supernova Datasets". The Astrophysical Journal (Chicago: University of Chicago Press) 686 (2): 749–778. arXiv:0804.4142. Bibcode:2008ApJ...686..749K. doi:10.1086/589937.. They find a best fit value of the dark energy density, \Omega_{\Lambda} of 0.713+0.027–0.029(stat)+0.036–0.039(sys), of the total matter density, \Omega_{M}, of 0.274+0.016–0.016(stat)+0.013–0.012(sys) with an equation of state parameter w of −0.969+0.059–0.063(stat)+0.063–0.066(sys).</ref><br />{{سخ}}
''' تابش زمینه کیهانی '''{{سر خطسخ}}
به عنوان میراث زمان واجفتیدگی کیهان، تابش زمینه کیهانی شامل اطلاعات زیادی از عالم اولیه می‌باشد. آزمایش های جاری روی این پدیده، کاوشگر ناهمسانگردی ریزموجی ویلکینسون، ماهواره پلانک و... می‌باشد.
از مشاهدات تابش زمینه کیهانی، با استخراج برخی فواصل می‌توان انرژی تاریک را مقید نمود. برای مثال پارامتر انتقال R که در زمان واجفتیدگی بیان می شود *z. این پارامتر به خوبی سلطه تابش زمینه کیهانی را بر انبساط عالم نشان می دهد و برای مدل‌هایی که از لامبدا سی دی ام دور هستند تقریباتقریباً بسیار خوبی است. مقیاس صوتی یکی دیگر از نسبت فواصل است lA که متناسب است با نسبت فاصله قطری زاویه ای بر افق صدا. این کمیت چند قطبی بودن تابش زمینه کیهانی مختصات قله صوتی را ارائه می کند.
داده‌های تابش زمینه کیهانی می تواند برای کاوش انرژی تاریک از طریق انتگرال اثر ساکس ولف مورد استفاده قرار گیرد. این اثر ناهمسانگرد مقیاس بزرگ ناشی از پتانسیل های مختلف گرانشی در زمان شتاب کیهان هستند و از طریق رابطه متقابل بین تابش زمینه کیهانی و ساختار مقیاس بزرگ در حدود 4σ آشکار می شوند.<br />{{سخ}}
''' نوسانات صوتی باریون '''{{سر خطسخ}}
نوسانات صوتی باریون به ماده باریونی خوشه شده یا فرا چگال در یک مقیاس طولی خاص ( در عالم امروزی در حدود 150 مگا پارسک) ناشی از امواج صوتی اشاره می کند که در عالم اولیه و جوان منتشر می‌شدند. این امر خط کشی استاندارد را برای مشاهدات کیهانی ایجاد می کند و می‌تواند در انتقال به سرخ های کمتر از 1 از طریق بررسی کهکشانی اندازه گیری شود. یکی از معتبرترین اندازه گیری نوسانات صوتی باریون، نقشه انتقال به سرخ کهکشانی میدان دو درجه (2dFGRS)، SDSS و نقشه انرژی تاریک WiggleZ می‌باشد.<br />{{سخ}}
''' همگرایی ضعیف '''{{سر خطسخ}}
همگرایی ضعیف یعنی تحریف جزئی تصویر اجرام دور ناشی از خمش گرانشی نور توسط ساختار عالم. جرم و موقعیت گرایش بستگی به توزیع ماده در مخروط نوری دارد، درحالیکه فواصل اجسام و گرایش آن‌ها توسط هندسه فضا زمانی تعیین می شود. پس همگرایی ضعیف برای کاوش انرژی تاریک از طریق تأثیر هردو انبساط کیهان و تاریخ رشد می‌باشد. پروژه جاری برای همگرایی ضعیف، پروژه (CFHTLS) می‌باشد.<br />{{سخ}}
''' ساختار مقیاس بزرگ '''{{سر خطسخ}}
نظریه ساختار مقیاس بزرگ که حاکم بر نحوه شکل گیری ساختار عالم است(ستارگان، کوازارها و خوشه و گروه‌های کهکشانی) نشان می دهد که چگالی ماده در عالم تنها 30% چگالی بحرانی است. بررسی های سال 2011، نقشه برداری WiggleZ از بیشتر از 000/200 کهکشان شواهدی بر وجود انرژی تاریک ارائه کرد. اگرچه فیزیک دقیق پشت آن ناشناخته باقی مانده است.<br />{{سخ}}
''' اثر ساکس ولف '''{{سر خطسخ}}
انبساط شتابدار عالم به دلیل چاه‌های پتانسیل گرانشی و عبور فوتون‌ها از آن‌ها لکه‌های سرد و گرم روی نقشه CMB ایجاد می کند یعنی انتقال به سرخ گرانشی انجام می‌دهند که سبب می شوند طیف CMB نا هموار و نامنظم به نظر برسد. این اثر ساکس ولف است که اولین نشانه انرژی تاریک در عالم تخت می‌باشد.<br />{{سخ}}
''' کاوشگران دیگر انرژی تاریک '''{{سر خطسخ}}
آ. خوشه‌های کهکشانی<br />{{سخ}}
خوشه کهکشان‌ها و تعدادی از گروهای شناخته شده آن‌ها ٬بزرگ‌ترین اجرام جهان هستند.یک خوشه کهکشانی از سه بخش تشکیل شده است؛ کهکشان‌هایی که دارای میلیاردها ستاره اند، گاز داغ بین کهکشان‌ها و ماده تاریک، ماده‌ای با هویتی مرموز که بیش‌ترین جرم کهکشان را تشکیل می‌دهد.<br />{{سخ}}
ب. انفجارهای پرتو گاما
فوران ناگهانی و شدید پرتو گاما در اعماق کیهان. این پدیده ده‌ها سال به عنوان یکی از پدیده‌های مرموز اخترشناسی شناخته می‌شد. امروزه معلوم شده‌است که برخی از این انفجارها مربوط به ابرنواخترها، و برخی دیگر مربوط به مگنتارها یا مغنا اخترهستند.
خط ۵۸:
{{داده‌های کتابخانه‌ای}}
 
[[رده:انرژی (فیزیک)]]
[[رده:فهرست مسئله‌های حل‌نشده در اخترشناسی]]
[[رده:کیهان‌شناسی]]