اصل عدم قطعیت: تفاوت میان نسخه‌ها

محتوای حذف‌شده محتوای افزوده‌شده
پیوند به بیرون از انگلیسی/ حذف منبع تبلیغی کاربر
خط ۳:
'''اصل عدم قطعیت''' {{به انگلیسی|Uncertainty principle}} در [[مکانیک کوانتومی]] را [[هایزنبرگ|ورنر هایزنبرگ]]، [[فهرست فیزیکدانان|فیزیکدان]] [[آلمان]]ی، در سال [[۱۹۲۶ (میلادی)|۱۹۲۶]] فرمول‌بندی کرد.
 
در [[فیزیک کوانتومی]]، اصل عدم قطعیت هایزنبرگ، اظهار می‌دارد که جفت‌های مشخصی از [[خواص فیزیکی مواد|خواص فیزیکی]]، مانند [[مکان]] و [[تکانه]]، نمی‌تواند با دقتی دلخواه معلوم گردد. به عبارت دیگر، افزایش دقت در کمیت یکی از آن خواص مترادف با کاهش دقت در کمیت خاصیت دیگر است.<ref name=Sen2014>{{Cite journal |last1 = Sen | first1 = D. | title = The uncertainty relations in quantum mechanics | url = http://www.currentscience.ac.in/Volumes/107/02/0203.pdf | journal = Current Science | volume = 107| issue = 2| year = 2014| pages = 203–218 }}</ref> این عبارت به دو روش گوناگون تفسیر شده‌است. بنا بر دیدگاه هایزنبرگ، غیرممکن است که همزمان [[سرعت]] و مکان [[الکترون]] یا هر ذرهٔ دیگری با دقت یا قطعیت دلخواه معین شود. بنا بر دیدگاه گروه دوم، که افرادی چون [[بالنتین]] در آن قرار دارند، این عبارت راجع به محدودیت دانشمندان در اندازه‌گیری کمیت‌های خاصی از سیستم نیست، بلکه امری است راجع به طبیعت و ذات خود سیستم چنان‌که معادلات [[مکانیک کوانتومی]] شرح می‌دهد.
در مکانیک کوانتوم، یک [[ذره]] به وسیلهٔ بستهٔ موج شرح داده می‌شود. اگر اندازه‌گیری مکان ذره مد نظر باشد، طبق معادلات، ذره می‌تواند در هر مکانی که دامنهٔ موج صفر نیست، وجود داشته باشد و این به معنی عدم قطعیت مکان ذره است. برای به دست آوردن مکان دقیق ذره، این بستهٔ موج باید تا حد ممکن «فشرده» شود، که یعنی، ذره باید از تعداد زیادی [[موج سینوسی]] که به یکدیگر اضافه شده‌اند (بر روی هم جمع شده‌اند) ساخته شود. از طرف دیگر، تکانهٔ ذره متناسب با [[طول موج]] یکی از این امواج سینوسی است، اما می‌تواند هر کدام از آن‌ها باشد. بنا بر این هر چقدر که مکان ذره –به واسطهٔ جمع شدن تعداد بیشتری موج- با دقت بیشتری اندازه‌گیری شود، تکانه با دقت کمتری معین می‌شود (و بر عکس).
تنها ذره‌ای که مکان دقیق دارد، ذرهٔ متمرکز در یک نقطه است، که چنین موجی طول موج نامعین دارد (و بنا بر این تکانهٔ نامعین دارد). از طرف دیگر تنها موجی که طول موج معین دارد، نوسان منظم تناوبی بی‌پایان در فضا است که هیچ مکان معینی ندارد. در نتیجه در مکانیک کوانتومی، حالتی نمی‌تواند وجود داشته باشد که ذره را با مکان و تکانهٔ معین شرح دهد.
اصل عدم قطعیت را می‌توان بر حسب عمل اندازه‌گیری، که شامل فروپاشی تابع موج نیز می‌شود، بازگویی کرد. هنگامی که مکان اندازه‌گیری می‌شود، تابع موج به یک برآمدگی با پهنای بسیار کم فروپاشیده می‌شود، و تکانهٔ تابع موج کاملاً پخش می‌شود. تکانهٔ ذره به مقداری متناسب با دقتِ اندازه‌گیری مکان، در عدم قطعیت باقی می‌ماند. مقداری باقی‌ماندهٔ عدم قطعیت نمی‌تواند از حدی که اصل عدم قطعیت مشخص کرده است،کرده‌است، کمتر شود، و [[مهم نیست]] که فرایند و تکنیک اندازه‌گیری چیست.
این بدین معنی است که اصل عدم قطعیت مربوط به [[اثر مشاهده‌گر]] است. اصل عدم قطعیت کمترین مقدار ممکن در آشفتگی تکانه، در حین اندازه‌گیری مکان، و بر عکس، را معین می‌کند. بیان ریاضی اصل عدم قطعیت این است که هر [[حالت کوانتومی]] این خاصیت را دارد که ریشه متوسط مربعِ (RMS) انحرافات از [[مقدار متوسط]] مکان (موقعیت) (انحراف استاندارد توزیع X):
:<math>\Delta X = \sqrt{\langle(X - \langle X\rangle)^2\rangle} \,</math>
خط ۲۱:
{{مکانیک کوانتومی}}
[[پرونده:Heisenberg's Microscope 1.gif|left]]
[[ورنر هایزنبرگ]] اصل عدم قطعیت را هنگامی که بر روی [[مبانی ریاضی]] مکانیک کوانتومی در مؤسسهٔ [[نیلز بوهر]] در [[کپنهاگ]] مشغول بود، صورت‌بندی کرد. در سال ۱۹۲۵ میلادی، پس از انجام یک کار پیشروانه به همراه [[هندریک آنتونی کرامرز|هندریک کرامرز]]، هایزنبرگ مکانیک ماتریسی را بنیان گذاشت، که سبب جایگزین شدن مکانیک مدرن کوانتومی به جای نظریهٔ کوانتومی قدیمی که فاقد عمومیت بود شد. فرض اصلی این بود که مفهوم حرکت کلاسیک به اندازهٔ کافی در سطح کوانتومی دقیق نیست، و الکترون‌های اتمی آن‌گونه که در [[فیزیک کلاسیک]] از مفهوم حرکت برداشت می‌شود، در مدارهای دقیقاً معین حرکت نمی‌کنند. در عوض، حرکت به شکل عجیبی پخش شده‌است: تبدیل فوریهٔ زمان تنها شامل فرکانس‌هایی است که در جهش‌های کوانتومی مشاهده می‌شود. مقاله هایزنبرگ هیچ کمیت مشاهده‌ناپذیری مانند مکان دقیق الکترون در مدار در هر زمان دلخواه را نمی‌پذیرد؛ او به نظریه‌پرداز تنها این اجازه را می‌دهد که دربارهٔ مولفه‌های تبدیل فوریهٔ حرکت حرف بزند. از آنجا که مولفه‌های فوریه در فرکانس‌های کلاسیک تعریف نشده است،نشده‌است، نمی‌توان از آن‌ها برای ساخت و تشریح مسیر دقیق حرکت الکترون استفاده کرد؛ در نتیجه فرمالیسم نمی‌تواند به این پرسش‌ها پاسخ قطعی بدهد که الکترون دقیقاً در کجا است یا دقیقاً چه سرعتی دارد.
 
برجسته‌ترین خاصیت ماتریس‌های نامتناهی هایزنبرگ برای مکان و تکانه این است که در عمل ضرب جابجایی‌ناپذیر هستند. مقدار انحراف از جابجایی‌پذیری توسط رابطهٔ جابجایی هایزنبرگ مشخص می‌گردد:
خط ۵۹:
این تبیین نادرست نیست، و توسط هایزنبرگ و نیلز بوهر استفاده شده‌است. باید توجه داشت که هر دوی آن‌ها، کم و بیش در چهارچوب فلسفی [[پوزیتیویسم منطقی]] می‌اندیشیدند. در این روشِ نگرش، ذات حقیقی یک سیستم فیزیکی، بدان گونه که وجود دارد، تنها با تن دادن به بهترین اندازه‌گیری ممکن تعریف می‌شود، اندازه‌گیری‌ای که علی‌الاصول قابل اجرا باشد. به عبارت دیگر، اگر یک خاصیت سیستم (علی‌الاصول) قابل اندازه‌گیری با دقتی بیشتر از یک حد معین نباشد، آنگاه این محدودیت یک محدودیتِ سیستم است و نه محدودیتِ دستگاه‌های اندازه‌گیری. پس هر گاه که آنها از آشفتگی غیرقابل اجتناب در هر اندازه‌گیری قابل تصور حرف می‌زدند، منظورشان آشکارا، عدم قطعیت ذاتی سیستم بود و نه عدم قطعیت ابزارها و وسایل اندازه‌گیری.
 
امروزه [[پوزیتیویسم منطقی]] در بسیاری از موارد از رونق افتاده است،افتاده‌است، و از همین رو تبیین اصل عدم قطعیت بر حسب اثر مشاهده‌گر می‌تواند گمراه‌کننده باشد. برای یک شخص که به پوزیتیویسم منطقی اعتقاد ندارد، آشفتگی خاصیت ذاتی یک ذره نیست، بلکه مشخصهٔ فرایند اندازه‌گیری است، نزد چنین فردی ذره به صورت نهانی دارای تکانه و مکان دقیقی است اما ما به دلیل نداشتن ابزارهای مناسب نمی‌توانیم آن کمیت‌ها را به دست بیاوریم. چنین تعبیری قابل قبول در مکانیک کوانتوم استاندارد نیست. در مکانیک کوانتوم، حالت‌هایی که در آن سیستم دارای تکانه و مکان معین باشد، اصلاً وجود ندارد.
 
تبیین اثر مشاهده‌گر می‌تواند به طریق دیگری هم موجب گمراهی شود، چرا که برخی اوقات خطا در اندازه‌گیری ذره سبب ایجاد آشفتگی می‌شود. مثلاً اگر یک فیلم عکاسی بی عیب و نقص که یک سوراخ ریز در وسط آن قرار دارد را برای آشکارسازی فوتون استفاده کنیم، و فوتون تصادفاً از درون آن سوراخ عبور کند، با اینکه هیچ مشاهدهٔ مستقیمی از مکان ذره انجام نشده است،نشده‌است، اما تکانه آن نامعین خواهد شد؛ که این استدلال از دیدگاه کپنهاگی نادرست است، چرا که عبور ذره از میان سوراخ، سبب تعین مکان شده و طبق اصل عدم قطعیت در آن هنگام تکانه نامتعین است. همچنین ممکن است استدلال شود که، پس از عبور [[فوتون]] از سوراخ اگر تکانه را اندازه بگیریم، می‌توانیم به تکانه ذره هنگام عبور از سوراخ پی ببریم، و در این حالت هم تکانه و هم مکان ذره را با دقت نامحدود اندازه گرفته‌ایم. پاسخ صریح هایزنبرگ به چنین استدلالی این است که در اگر تکانه دقیقاً در لحظه عبور از سوراخ اندازه‌گیری نشود، اصلاً تعین نداشته است،نداشته‌است، و اندازه‌گیری در آینده چیزی از واقعیتی که گذشته‌است را معین نمی‌کند.
تبیین مذکور به طریق دیگری هم می‌تواند موجب گمراهی شود. به دلیل سرشت ناموضعِ حالت‌های کوانتومی، دو ذره که در هم تنیده شده‌اند را می‌تواند از هم جدا کرد و اندازه‌گیری را در فقط بر روی یکی از آن دو انجام داد. این اندازه‌گیری هیچ آشفتیگی‌ای به معنای کلاسیکی‌اش در ذرهٔ دیگر ایجاد نمی‌کند، اما می‌تواند اطلاعاتی دربارهٔ آن آشکار سازد؛ و بدین طریق می‌تواند مقدار مکان و تکانه را با دقت نامحدود اندازه‌گیری کرد.
 
خط ۱۲۵:
انحراف استانداردِ کمیت مشاهده‌پذیر X در حالت سیستم ψ است.
با جانشین کردن <math>A - \lang A\rang_\psi</math> به جای A و <math>B - \lang B\rang_\psi</math> به جای B در نامعادلهٔ عمومی عملگر نُرم، از آن‌جا که بخش موهومی ضرب، جابجاگر، با این جانشینی بدون تغییر باقی می‌ماند:
::<math> [A - \lang A\rang, B - \lang B\rang] = [ A , B ].</math>
 
سمت بزرگ نامعادله برابر حاصل ضرب نرم‌های <math>A-\lang A\rang</math> و <math>B-\lang B\rang</math> است، که در مکانیک کوانتومی انحراف استاندارد A و B می‌باشد. سمت کوچک نامعادله نیز نرمِ جابجاگر است، که برای مکان و تکانه دقیقاً برابر <math>\scriptstyle \hbar</math> می‌باشد.
خط ۱۳۳:
* Beller, M. (۱۹۹۹) Quantum Dialogue (Chicago: University of Chicago Press).
* Bohr, N. (۱۹۲۸) ‘The Quantum postulate and the recent development of atomic theory’ Nature (Supplement) 121 580-590. Also in (Bohr, 1934), (Wheeler and Zurek, 1983), and in (Bohr, ۱۹۸۵).
* Bohr, N. (۱۹۲۹) ‘Introductory survey’ in (Bohr, 1934), pp.&nbsp; ۱–۲۴.
* Bohr, N. (۱۹۳۴) Atomic Theory and the Description of Nature (Cambridge: Cambridge University Press). Reissued in 1961. Appeared also as Volume I of The Philosophical Writings of Niels Bohr (Woodbridge Connecticut: Ox Bow Press, ۱۹۸۷).
* Bohr, N. (۱۹۳۷) ‘Causality and complementarity’ Philosophy of Science ۴ ۲۸۹–۲۹۸.
* Bohr, N. (۱۹۳۹) ‘The causality problem in atomic physics’ in New Theories in Physics (Paris: International Institute of Intellectual Co-operation.
* Bohr, N. (۱۹۳۹) ‘The causality problem in atomic physics’ in New Theories in Physics (Paris: International Institute of Intellectual Co-operation). Also in (Bohr, 1996), pp.&nbsp; ۳۰۳–۳۲۲.
* Bohr, N. (۱۹۴۸) ‘On the notions of causality and complementarity’ Dialectica 2 312-319. Also in (Bohr, 1996) pp.&nbsp; ۳۳۰–۳۳۷.
* Bohr, N. (۱۹۴۹) ‘Discussion with Einstein on epistemological problems in atomic physics’ In Albert Einstein: philosopher-scientist. The library of living philosophers Vol. VII, P.A. Schilpp (ed.), (La Salle: Open Court) pp.&nbsp; ۲۰۱–۲۴۱.
* Bohr, N. (۱۹۸۵) Collected Works Volume 6, J. Kalckar (ed.) (Amsterdam: North-Holland).
* Bohr, N.(۱۹۹۶) Collected Works Volume 7, J. Kalckar (ed.) (Amsterdam: North-Holland).
* Condon, E.U. (۱۹۲۹) ‘Remarks on uncertainty principles’ Science ۶۹ ۵۷۳–۵۷۴.
* Eddington, A. (۱۹۲۸) The Nature of the Physical World, (Cambridge: Cambridge University Press).
* Einstein, A. (۱۹۱۹) ‘My Theory’, The London Times, November 28, p.&nbsp; 13. Reprinted as ‘What is the theory of relativity?’ in Ideas and Opinions (New York: Crown Publishers, 1954) pp.&nbsp; ۲۲۷–۲۳۲.
* Heisenberg, W. (۱۹۲۵) ‘Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen’ Zeitschrift für Physik ۳۳ ۸۷۹–۸۹۳.
* Heisenberg, W. (۱۹۲۶) ‘Quantenmechanik’ Die Naturwissenschaften ۱۴ ۸۹۹–۸۹۴.
* Heisenberg, W. (۱۹۲۷) ‘Ueber den anschaulichen Inhalt der quantentheoretischen Kinematik and Mechanik’ Zeitschrift für Physik 43 172-198. English translation in (Wheeler and Zurek, 1983), pp.&nbsp; ۶۲–۸۴.
* Heisenberg, W. (۱۹۲۷) ‘Ueber die Grundprincipien der "Quantenmechanik" ‘ Forschungen und Fortschritte ۳ ۸۳.
* Heisenberg, W. (۱۹۲۸) ‘Erkenntnistheoretische Probleme der modernen Physik’ in (Heisenberg, 1984), pp.&nbsp; ۲۲–۲۸.
* Heisenberg W. (۱۹۳۰) Die Physikalischen Prinzipien der Quantenmechanik (Leipzig: Hirzel). English translation The Physical Principles of Quantum Theory (Chicago: University of Chicago Press, ۱۹۳۰).
* Heisenberg, W. (۱۹۳۱) ‘Die Rolle der Unbestimmtheitsrelationen in der modernen Physik’ Monatshefte für Mathematik und Physik ۳۸ ۳۶۵–۳۷۲.
خط ۱۵۶:
* Heisenberg, W. (۱۹۷۵) ‘Bemerkungen über die Entstehung der Unbestimmtheitsrelation’ Physikalische Blätter 31 193-196. English translation in (Price and Chissick, ۱۹۷۷).
* Heisenberg W. (۱۹۸۴) Gesammelte Werke Volume C۱، W. Blum, H. -P. Dürr and H. Rechenberg (eds) (München: Piper).
* Hilgevoord, J. and Uffink, J. (۱۹۸۸) ‘The mathematical expression of the uncertainty principle’ in Microphysical Reality and Quantum Description, A. van der Merwe et al. (eds.), (Dordrecht: Kluwer) pp.&nbsp; ۹۱–۱۱۴.
* Jammer, M. (۱۹۷۴) The Philosophy of Quantum Mechanics (New York: Wiley).
* Jordan, P. (۱۹۲۷) ‘Über eine neue Begründung der Quantenmechanik II’ Zeitschrift für Physik ۴۴ ۱–۲۵.
خط ۱۶۶:
* Popper, K. (۱۹۶۷) ‘Quantum mechanics without "the observer"’ in M. Bunge (ed.) Quantum Theory and Reality (Berlin: Springer).
* Price, W.C. and Chissick, S.S (eds) (1977) The Uncertainty Principle and the Foundations of Quantum Mechanics, (New York: Wiley).
* Robertson, H.P. (۱۹۲۹) ‘The uncertainty principle’ Physical Review 34 573-574. Reprinted in Wheeler and Zurek (1983) pp.&nbsp; ۱۲۷–۱۲۸.
* Schrödinger, E. (۱۹۳۰) ‘Zum Heisenbergschen Unschärfeprinzip’ Berliner Berichte ۲۹۶–۳۰۳.
* Wheeler, J.A. and Zurek, W.H. (eds) (1983) Quantum Theory and Measurement (Princeton NJ: Princeton University Press).
 
{{پایان چپ‌چین}}
 
== جستارهای وابسته ==
* [[مکانیک کوانتومی]]