باز کردن منو اصلی

در نظریه احتمالات و آمار وردایی[۱] یا واریانس نوعی سنجش پراکندگی است.

مقدار وردایی با میانگین‌گیری از مربع فاصله مقدار محتمل یا مشاهده شده با مقدار مورد انتظار محاسبه می‌شود. در مقایسه با میانگین می‌توان گفت که میانگین مکان توزیع را نشان می‌دهد، در حالی که وردایی مقیاسی است که نشان می‌دهد که داده‌ها حول میانگین چگونه پخش شده‌اند. وردایی کمتر بدین معنا است که انتظار می‌رود که اگر نمونه‌ای از توزیع مزبور انتخاب شود مقدار آن به میانگین نزدیک باشد. یکای وردایی مربع یکای کمیت اولیه می‌باشد. ریشه دوم وردایی که انحراف معیار نامیده می‌شود دارای واحدی یکسان با متغیر اولیه است.

واریانس یا وردایی عددی است که نشان می‌دهد چگونه یک سری داده حول مقدار میانگین پخش می‌شوند. برای تعریف وردایی اگر فرض کنیم که متغیر تکی دارای توزیع است و متوسط توزیع جمعیت آن را با نشان دهیم آنگاه وردایی این جمعیت به صورت زیر تعیین می‌شود:

حال اگر یک توزیع مجزا داشته باشیم که هر مجموعه داده در آن، دارای احتمال باشد، وردایی به صورت زیر محاسبه می‌شود:

اما در بیشتر موارد توزیع حاکم بر داده‌ها مشخص نیست در این حالت وردایی را به صورت زیر تخمین می‌زنیم:

در این رابطه میانگین (امید ریاضی) داده‌هاست که خود از رابطهٔ زیر حساب می‌شود:

البته باید توجه داشت که تخمین فوق یک تخمین دقیق و بدون خطا برای وردایی نیست لذا برای از بین بردن این خطا در تخمین از وردایی تصحیح شده‌استفاده می‌کنیم که به صورت زیر تعریف می‌گردد

محتویات

تعریفویرایش

اگر  ، امید ریاضی (میانگین) متغیر تصادفی   باشد، آنگاه وردایی   برابر خواهد بود با:

 

برای به خاطر سپردن راحت‌تر این فرمول گفته‌می‌شود وردایی برابر است با «میانگین مجذور، منهای مجذور میانگین». وردایی متغیر تصادفی X را معمولاً با Var(X)‎ یا   یا به صورت ساده‌تر σ2 (تلفظ می‌شود سیگما-دو) نمایش می‌دهند.

حالت گسستهویرایش

اگر  یک متغیر تصادفی با تابع جرم احتمال به این شکل باشد   آنگاه واریانس آن به این شکل محاسبه می‌شود.

 

عبارت پیشین با معادله پایین معادل است:

 

در اینجا   امید ریاضی   است.

 

واریانس  مقدار که از لحاظ احتمال با یکدیگر برابرند با عبارت پایین برابر خواهد بود:

 

در اینجا   میانگین  داده‌است:

 

البته واریانس این   داده را بدون در نظرگرفتن میانگین آن‌ها هم می‌شود به شکل پایین محاسبه کرد:[۲]

 

حالت پیوستهویرایش

 

در اینجا میانگین یا  به این شکل محاسبه می‌شود:‌

 

خواصویرایش

واریانس همیشه غیر منفی است:
 
واریانس متغیر تصادفی ثابت همیشه صفر است به این معنی که:
 
اگر به متغیر تصادفی مقداری ثابت اضافه شود در واریانس متغیر تصادفی جدید تغییری ایجاد نمی‌شود:
 
اگر متغیر تصادفی در مقداری ثابت ضرب شود، واریانس متغیر تصادفی جدید در مربع مقدار ثابت قبلی ضرب می‌شود:
 
واریانس ترکیب خطی دو متغیر تصادفی به این شکل محاسبه می‌شود:
 
 
به صورت کلی جمع   متغیر تصادفی به شکل پایین محاسبه می‌شود:
 
واریانس ترکیب خطی   متغیر تصادفی به شکل پایین محاسبه میشود:
 
اگر کوواریانس این متغیرهای تصادفی نسبت به هم صفر باشد یعنی   آنگاه:
 

مثالویرایش

تاسویرایش

اگر یک تاس داشته باشیم که احتمال آمدن هر عدد   باشد، آنگاه امید ریاضی تاس با   برابر خواهد بود و واریانس تاس می‌شود:‌

 

به صورت کلی‌تر اگر یک متغیر گسسته تصادفی داشته باشیم که   مقدار بگیرد و احتمال هر کدام از این مقادیر   باشد، واریانس متغیر تصادفی ما برابر خواهد بود با:

 

توزیع طبیعیویرایش

توزیع طبیعی با تابع چگالی احتمال  و پارامترهای   و   به شکل پایین محاسبه می‌شود:

 

توزیع نماییویرایش

توزیع طبیعی با تابع چگالی احتمال  و پارامتر   به شکل پایین محاسبه می‌شود، در این محاسبه  :

 

توزیع پوسانویرایش

توزیع طبیعی با تابع چگالی احتمال   و پارامتر   به شکل پایین محاسبه می‌شود، در این محاسبه  :

 

توزیع دوجمله‌ایویرایش

توزیع طبیعی با تابع چگالی احتمال   و پارامتر   و   به شکل پایین محاسبه می‌شود، در این محاسبه  :

 

واژه‌شناسیویرایش

فرهنگستان زبان فارسی، وردیدن از ریشه باستانی ورت (ورتیدن)، را بجای فعل to varry برگزیده است و از این فعل مشتقات وردایی (variance)،وردش (variation)، وردا (variant)، هم‌وردا (covariant)، هم وردایی (covariannce)، ناوردا (invariant)، ناوردایی (invariance)، پادوردا (contravariance) را برساخته است.

تخمین واریانس یک تابعویرایش

برای تخمین واریانس یک تابع از بسط تیلور آن به صورت پایین استفاده می‌کنند.

 

جستارهای وابستهویرایش

منابعویرایش

page ۱۱۷٬۴۳ introduction to probabilities models by Sheldon M.Ross

  1. مصوب فرهنگستان زبان و ادب فارسی، دفتر نخست تا چهارم، 1376 تا 85
  2. Yuli Zhang, Huaiyu Wu, Lei Cheng (June 2012). Some new deformation formulas about variance and covariance. Proceedings of 4th International Conference on Modelling, Identification and Control(ICMIC2012). pp. 987–992.

مشارکت‌کنندگان ویکی‌پدیا. «Variance». در دانشنامهٔ ویکی‌پدیای انگلیسی، بازبینی‌شده در ۲۲ فوریه ۲۰۰۸.