تکانه
تکانه، اندازه حرکت (ترجمه از لفظ فرانسوی quantité de mouvement) یا مومنتوم (به انگلیسی: momentum) از کمیتهای برداری در فیزیک است. حاصلضرب جرم شیء در سرعت آن در هر لحظه، تکانه شیء در آن لحظه است؛ یعنی:
که در آن، جرم، سرعت و تکانه است. در دستگاه SI، تکانه بر حسب واحد kg. m/s اندازهگیری میشود. تکانه کمیتی برداری است پس هم دارای اندازه و هم دارای جهت است. در تعریف بالا فقط حرکت انتقالی مد نظر است؛ از اینرو، میتوان از ابعاد شیء صرف نظر کرده و آن را به عنوان یک ذره به حساب آورد. در ضمن، تکانه کمیتی موضعی است، بدین معنا که در هر نقطه از مسیر حرکت یا در هر لحظه[۱] مقدار دارد. از آنجا که در مطالعهٔ حرکت دورانی با مفهوم مشابهی موسوم به تکانهٔ زاویهای روبرو میشویم، بهتر است به جای تکانه از عبارت تکانهٔ خطی استفاده کنیم.
تکانهٔ خطی ذرهویرایش
نیوتن در کتاب اصول، قانون دوم حرکت خود را بر اساس مفهوم تکانهٔ خطی بیان کردهاست: برآیند همهٔ نیروهای وارد شده بر یک ذره با نرخ تغییرات زمانی تکانهٔ خطی ذره برابر است. بنابراین:
که در آن، نشان دهندهٔ برآیند همهٔ نیروهاست. بدیهی است که اگر هیچ نیرویی به ذره وارد نشود یا برآیند نیروهای وارد بر آن صفر باشد، تکانهٔ خطی، و به تبع آن، سرعت ذره با گذشت زمان ثابت خواهند ماند. سرعت کمیتی برداریست و ثابت ماندن آن بدین معناست که هم اندازه و هم جهت آن ثابت میمانند؛ در نتیجه، ثابت ماندن سرعت معادل با انجام حرکت مسقیم الخط یکنواخت است؛ بنابراین، اگر باشد حرکت ذره مسقیم الخط یکنواخت خواهد بود.[۲]
با جایگزینی و محاسبهٔ مشتق حاصل ضرب داریم:
با فرض آن که جرم سیستم ثابت باشد، جملهٔ اول در طرف راست معادلهٔ بالا حذف میشود و میتوان نوشت:
تکانهٔ خطی سیستم بس ذرهایویرایش
تکانهٔ خطی یک سیستم بس ذرهای (سیستم متشکل از دو یا چند ذره) به صورت حاصل جمع تکانههای خطی تک تک ذرات تشکیل دهندهٔ سیستم تعریف میشود:
مرکز جرم یک سیستم بس ذرهای به صورت زیر تعریف میشود:
که در آن، جرم کل سیستم (مجموع جرمهای همهٔ ذرات تشکیل دهندهٔ سیستم) است:
با توجه تعریف به بردار سرعت، اگر از طرفین معادلهٔ بالا نسبت به زمان مشتق بگیریم، به نتیجهٔ زیر میرسیم
بنابراین، به جای مطالعهٔ حرکت تک تک ذرات تشکیل دهندهٔ سیستم، میتوان فرض کرد که ذرهای با جرم کل در مرکز جرم سیستم قرار گرفته و با سرعت در حال حرکت است. تکانهٔ خطی این ذره برابر تکانهٔ خطی کل سیستم خواهد بود:
با مشتقگیری از رابطهٔ بالا نسبت به زمان، قانون دوم نیوتون برای سیستم بس ذرهای به شکل حاصل میشود:
طرف چپ معادلهٔ بالا نشان دهندهٔ برآیند همهٔ نیروهای داخلی و خارجی وارد بر همهٔ ذرات تشکیل دهندهٔ سیستم است. در یک سیستم ذرهای، هر یک از ذرات تشکیل دهنده، هم تحت تاءثیر محیط و هم تحت تاءثیر ذرهٔ دیگر (همهٔ ذرات سیستم به جز خودش) است. پس هر ذره، علاوه بر نیروهایی که از طرف محیط سیستم به آن وارد میشود، نیرو از ذرهٔ داخل سیستم دریافت میکند.
در این معادله، برآیند نیروهای خارجی وارد شده به ذرهٔ ام و نیروی وارد شده از ذرهٔ ام به ذرهٔ ام هستند. بنا به قانون سوم نیوتن، اگر ذرهٔ ام نیروی را به ذرهٔ ام وارد کند، ذرهٔ ام نیز نیروی را به ذرهٔ ام وارد خواهد کرد. در نتیجه، در محاسبهٔ نیروی کل وارد بر کل سیستم ذرهای، علاوه بر نیروهای خارجی، نیروی داخلی هم داریم که دو به دو همدیگر را حذف میکنند؛ بنابراین،
یعنی این که، نیروهای داخلی سیستم اثری بر رفتار کل سیستم ندارند و در مطالعهٔ دینامیک سیستم کافی است فقط نیروهای خارجی را در نظر بگیریم.
قانون پایستگی تکانهٔ خطیویرایش
اگر هیچ نیروی خارجی بر سیستم اثر نکند یا برآیند نیروهای خارجی وارد بر سیستم صفر باشد، تکانهٔ خطی سیستم با گذشت زمان ثابت میماند. به زبان ریاضی:
نتیجهٔ حاصل به قانون پایستگی تکانهٔ خطی معروف است. هم نیرو و هم تکانهٔ خطی کمیتهایی برداریند، بنابراین در هر جهتی که مؤلفهٔ نیروی برآیند صفر باشد مؤلفهٔ تکانهٔ خطی در آن جهت با گذشت زمان پایسته میماند (مستقل از این که در جهات دیگر پایسته هست یا نه). به عنوان نمونه، در دستگاه مختصات دکارتی سه بعدی، که
هر یک از مؤلفههای نیرو صفر باشند مؤلفهٔ متناظر تکانهٔ خطی پایسته خواهد بود؛ فارغ از این که دو مؤلفهٔ دیگر پایسته هستند یا نه. نیروی پیشرانه ی حاصل از موتور جت و پدیدهٔ پس زنی تفنگ نمونههایی از اثر قانون پایستگی تکانهٔ خطی میباشند. در هر دوی این مثالها، جزئی از سیستم، به بهای پرتاب جزء دیگر در یک جهت، در جهت مخالف پس زده میشود.
در موتور جت سوخت با هوای وارد شده از دهانهٔ جلویی موتور مخلوط میشود و گاز متراکم داغی در اثر سوختن حاصل میگردد. گاز داغ و بدنهٔ موتور اجزای تشکیل دهندهٔ یک سیستم دو جزئی هستند. این سیستم دو جزئی تکانهٔ خطی مشخصی دارد؛ وقتی گاز داغ با فشار به سمت بیرون هدایت میشود، تکانهٔ خطی هر دو جزء تغییر میکند. چون نیروهای مبادله شده بین گاز و موتور نیروهای داخلی سیستم دو جزئی هستند و هیچ نیروی خارجی در امتداد حرکت موتور جت بدان وارد نمیشود، تکانهٔ خطی کل سیستم دو جزئی ثابت میماند؛ بنابراین، تغییر تکانهٔ اجزاء به گونه ایست که کل تغییرات صفر باشد؛ اگر و به ترتیب نشان دهندهٔ تغییرات تکانهٔ خطی گاز و بدنه باشند، داریم:
به ازای تغییر سرعتی که به تودهٔ گاز خروجی در یک جهت داده میشود خود موتور جت در جهت مخالف شتاب میگیرد.[۳]
پدیدهٔ پس زنی تفنگ را هم به همین ترتیب میتوان مورد بحث قرار داد. فرض کنید قبل از شلیک، تفنگ و گلوله هر دو ساکن باشند؛ اگر جرم تفنگ و گلوله را، به ترتیب با و ، و سرعتهای آن دو بعد از شلیک را به ترتیب با و نشان دهیم:
پس، در اثر شلیک گلوله، تفنگ سرعتی در خلاف جهت شلیک گلوله و متناسب با نسبت جرم گلوله به تفنگ پیدا میکند.
قانون پایستگی تکانهٔ خطی، با این که در این مقاله به صورت نتیجهای از قانون دوم نیوتن بیان شده، در واقع یکی از قوانین پایهای طبیعت است.
انفجار یک جسم و بقای تکانهویرایش
یک جسم ساکن در حالت سکون با اعمال یک نیروی درونی منفجر میشود و به تکههایی با اندازههای مختلف تبدیل میشود که هر کدام با زاویه، جرم و سرعت معینی به یک جهت خاص شروع به حرکت میکنند. با استفاده از قانون بقای تکانه جرم اولیه با مجموع جرمهای تکهها برابر و سرعت تکهها نیز منحصر بفرد میباشند، با تجزیه حرکت به مولفههای قائم و افقی و قرار دادن در معادله بقای تکانه پارامترهای مورد نظر قابل محاسبه میباشند.
در جسم متحرک سرعت تکهها ضریب یا نسبتی از سرعت اولیه جسم هستند و همانند مسئله جسم ساکن با تجزیه حرکت به مولفههای قائم و عمود برهم قابل محاسبه میباشند یعنی بقای تکانه را برای هر راستا جدا بررسی میکنیم.
بررسی یک نمونه مسئله انفجار جسم متحرک و تحلیل حرکت آنویرایش
تکانهٔ خطی در نسبیت خاصویرایش
در نظریهٔ نسبیت خاص، تکانهٔ خطی به شکلی بازتعریف میشود که قانون پایستگی تکانهٔ خطی برقرار باشد. p=m/√1-v^2/c^۲
تکانهٔ خطی تعمیم یافتهویرایش
تکانهٔ خطی در مکانیک کوانتومیویرایش
پانویسویرایش
- ↑ در فیزیک کلاسیک، فرض بر این است که در هر لحظهٔ دلخواه، موقعیت مکانی ذره را میتوان با هر دقت دلخواه تعیین کرد؛ فارغ از این که ذره در حال حرکت باشد یا نه. با این که این فرض کاملاً بدیهی به نظر میرسد، اما در فیزیک مدرن صادق نیست.
- ↑ این مطلب در واقع بیانی از قانون اول نیوتن است؛ بنابراین، قانون اول نیوتن حالت خاصی از قانون دوم نیوتون میباشد.
- ↑ در مطالعهٔ دقیق دینامیک موتور جت حتماً باید تغییرات جرم را نیز لحاظ کرد چرا که سوخت در حال مصرف شدن است.
جستارهای وابستهویرایش
منابعویرایش
- Halliday, David (1960–2007), Fundamentals of Physics, Robert Resnick, John Wiley & Sons, p. Chapter 9
Wikipedia contributors, "Momentum," Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=Momentum&oldid=664207561 (بازبینی ۲۹ مه ۲۰۱۵).
در ویکیانبار پروندههایی دربارهٔ تکانه موجود است. |
- سیامک علایی - دانشگاه صنعتی بابل - ایران