حلقه قفل‌شده فاز

حلقه قفل‌شدۀ فاز یا پی‌اِل‌اِل (به انگلیسی: Phase Locked Loop, PLL) یک سیستم کنترلی الکترونیکی است که یک موج سینوسی یا مربعی با فرکانس و فاز معین و پایدار، متناسب با ورودی یا مرجع می‌سازد.

حلقه قفل‌شدۀ فاز چندین نوع دارد؛ ساده‌ترینِ آن مداری الکترونیکی از یک نوسان‌گر با فرکانس متغیر و یک آشکارساز فاز در یک حلقه بازخورد است. فرکانس و فاز نوسان‌گر، از سوی یک ولتاژ اعمال‌شده به آن و متناسب با آن کنترل می شود، ازاین‌رو نوسان‌گر کنترل‌شده با ولتاژ (VCO) نامیده می‌شود. نوسان‌گر یک سیگنال تناوبی با فرکانس خاص تولید می‌کند و آشکارساز فاز، فاز آن سیگنال را با فاز سیگنال تناوبی ورودی مقایسه می‌کند تا نوسان‌گر را طوری تنظیم کند که فازها مطابقت پیدا کنند.

قفل نگه‌داشتن فاز خروجی با ورودی، ثابت نگه‌داشتن فرکانس‌ خروجی با ورودی را نیز لازم می‌دارد. در نتیجه، یک حلقه قفل‌شدۀ فاز، افزون بر هم‌فازساختن ورودی و خروجی، فرکانس ورودی را نیز دنبال می‌کند، یا فرکانس‌هایی تولید می‌کند که مضربی از فرکانس ورودی است. از این ویژگی، در دمدولاسیون، سنتز فرکانس، و هم‌فازساختن کلاک سیستم‌های دیجیتال استفاده می‌شود.

مدل ساده‌ترین پی‌ال‌ال آنالوگ.

PLL در ساختار خود، آشکارساز فاز شامل فیلتر پایین‌گذر و ضرب‌کننده، نوسان‌گر کنترل‌شده با ولتاژ، حلقه فیدبک منفی، و در برخی کاربردها، تقسیم‌کنندۀ فرکانس دارد.

حلقه قفل‌شدۀ فاز در رادیو، مخابرات، سیستم‌های دیجیتال و کامپیوتر، و ... فراوان استفاده می‌شود. آن را می‌توان برای دمدولاسیون سیگنال، بازیابی سیگنال از یک کانال مخابراتی نویزی، تولید فرکانس پایدار در مضارب فرکانس ورودی (سنتز فرکانس)، یا توزیع پالس ساعت (کلاک) دقیق در مدارهای دیجیتال مانند ریزپردازنده ها استفاده کرد.

ازآنجاکه امروزه یک حلقه قفل‌شدۀ فاز کامل را می‌توان به‌صورت یک مدار مجتمع پیاده کرد، این تکنیک در دستگاه‌های الکترونیکی مدرن با فرکانس‌های خروجی از کسری از هرتز تا چندین گیگاهرتز، فراوان استفاده می‌شود.

تاریخچهویرایش

تحقیقات اولیه دربارۀ حلقه قفل‌شده فاز به ۱۹۳۲ برمی‌گردد؛ زمانی که محققان بریتانیایی برای گیرنده سوپرهترودین ادوین آرمسترانگ، روش دیگری، یعنی گیرنده تبدیل-مستقیم هوموداین (به انگلیسی: Homodyne) را توسعه دادند. در گیرنده هوموداین (یا سینکروداین)، نوسان‌ساز محلی، موج سینوسی هم‌فرکانس و هم‌فاز با کاریِر سیگنال ورودی تولیدمی‌کند، که در سیگنال ورودی ضرب می‌شود و حاصل آن فیلتر (پایین‌گذر) میشود.

ساختارویرایش

حلقه قفل‌شده فاز، ممکن است آنالوگ یا دیجیتال پیاده شود، گرچه هر دو ره‌یافت از یک ساختار اصلی بهره می‌برند.

حلقه قفل‌شده فاز آنالوگ، چهار بخش اساسی دارد:

  • آشکارساز فاز
  • فیلتر پایین‌گذر
  • نوسان‌گر کنترل‌شده با ولتاژ
  • مسیر بازخورد، که ممکن است شامل یک تقسیم کننده فرکانس هم باشد.

قیاس مکانیکیویرایش

میزان کردن کشش سیم پیانو یا سنتور را می‌توان با عملکرد حلقه قفل‌شدۀ فاز مقایسه کرد. با یک دیاپازون یا لوله تنظیم (به انگلیسی: Pitch pipe) به عنوان فرکانس مرجع، کشش سیم تنظیم می‌شود تا اینکه دیگر فرکانس ضربه‌ای شنیده نشود.

انواعویرایش

دیجیتالویرایش

PLL دیجیتال اغلب به عنوان سینتی‌سایزر کلاک اصلی، مثلا برای میکروپروسسور بکار می‌رود. ساختار یک PLL دیجیتال، شبیه PLL آنالوگ (و گاهی ساده‌تر از آن) است. مکانیسم کنترل در PLL دیجیتال به صورت یک ماشین حالت محدود است. PLL دیجیتال دارای یک نوسان‌ساز کریستالی، شمارنده (بالا و پایین‌رونده) و مقایسه‌کننده فاز (گیت XOR) است.

آنالوگویرایش

PLL آنالوگ به‌طور کلی از یک آشکارساز فاز، فیلتر پایین‌گذر و نوسان‌ساز کنترل‌شده با ولتاژ (VCO) ساخته‌شده که در حلقه بازخورد منفی قرار دارند. ممکن است در مسیر بازخورد، در مسیر مرجع، یا هر دو یک تقسیم‌کننده فرکانس هم باشد، تا فرکانس کلاک خروجی PLL را در عددی صحیح ضرب یا تقسیم کند.

آشکارساز فازویرایش

آشکارساز فاز، ولتاژی تولید می‌کند که متناسب با اختلاف فاز دو سیگنال است. در یک PLL، دو ورودی آشکارساز فاز، ورودی مرجع و بازخورد از VCO هستند. ولتاژ خروجی آشکارساز فاز برای کنترل VCO استفاده می شود، به طوری که اختلاف فاز دو ورودی ثابت نگه داشته می‌شود و آن را یک سیستم بازخورد منفی می‌کند.

آشکارسازهای فاز دارای ویژگی‌های عملکردی متفاوتی هستند. برای مثال، میکسر فرکانس، هارمونیک‌هایی تولید می‌کند که سیستم را در کاربردهایی که خلوص طیفی سیگنال VCO مهم است، پیچیده‌تر می‌کند.

در PLL، اغلب لازم است بدانیم که چه زمانی حلقه از قفل خارج شده‌است. آشکارسازهای فرکانس فاز دیجیتال پیچیده‌تر معمولاً خروجی‌ای دارند که نشان‌دهنده وضعیت خروج از قفل است.

در PLL دیجیتال اغلب یک گیت XOR به عنوان یک آشکارساز فاز موثر و ساده استفاده می‌شود. هم‌چنین می‌توان آن را با تغییراتی اندک در PLL آنالوگ استفاده کرد.

نوسان‌سازویرایش

حلقه قفل‌شدۀ فاز، یک نوسان‌ساز با توانایی تولید فرکانس متغیر دارد، که می‌تواند یک نوسان‌ساز کنترل‌شده با ولتاژ آنالوگ یا یک نوسان‌ساز کنترل‌شده عددی (NCO) باشد.

مسیر بازخورد و تقسیم‌کننده اختیاریویرایش

حلقه قفل‌شدۀ فاز ممکن است برای تولید فرکانس دل‌خواه، دارای یک تقسیم‌کننده، که میان نوسان‌ساز و ورودی بازخورد به آشکارساز فاز قرار می‌گیرد، هم باشد. یک تقسیم‌کننده قابل‌برنامه‌ریزی به‌ویژه در فرستنده رادیویی مفید است، زیرا چندین فرکانس پایدار و دقیق را می‌توان با یک نوسان‌ساز کریستالی مرجع تولید کرد.

برخی از حلقه‌های قفل‌شدۀ فاز دارای یک تقسیم‌کننده دیگر میان نوسان‌ساز مرجع و ورودی مرجع به آشکارساز فاز هستند. اگر تقسیم‌کنندۀ مسیر بازخورد بر   و تقسیم‌کنندۀ ورودی مرجع بر   تقسیم کنند، PLL، فرکانس مرجع را در   ضرب می‌کند. شاید ساده‌تر به نظر برسد که به PLL فرکانس کمتری وارد کنیم، اما در برخی موارد ممکن است فرکانس مرجع از سوی مسائل دیگر محدود شود. بنابراین، به‌کاربردن تقسیم‌کننده مرجع مفید است.

کاربردهاویرایش

حلقه قفل‌شدۀ فاز، فراوان برای هم‌زمان‌سازی به‌کار می‌رود؛ مثلا برای بازیابی موج حامل، هم‌زمان‌سازی بیت و سیگنال. حلقه قفل‌شدۀ فاز همچنین در دمدولاسیون سیگنال‌های مدوله‌شده فرکانسی، به‌کار می‌رود. حلقه قفل‌شدۀ فاز در فرستنده‌ و گیرنده رادیویی، فرکانس‌های پایداری را که مضربی از یک فرکانس مرجع و با آن هم‌فاز هستند، تولید می‌کند.

بازیابی کلاکویرایش

برخی از رشته‌‌بیت‌ها (انگلیسی: bit stream)، به‌ویژه رشته‌بیت‌های اطلاعات ( ) با سرعت زیاد، مانند رشته‌بیت اطلاعات هنگام خواندن و نوشتن داده‌ها در درایو دیسک سخت)، بدون کلاک (پالس ساعت)، فرستاده می‌شوند. گیرنده، یک کلاک تولید می‌کند و سپس با یک حلقه قفل‌شدۀ فاز، آن را با رشته‌بیت دریافت‌شده، هم‌فاز می‌کند. این فرایند بازیابی کلاک نامیده می‌شود. در این کار، رشته‌بیت دریافت‌شده باید تعداد کافی   داشه باشد تا PLL بتواند هر انحرافی (دریفت) در نوسان‌ساز خود را تصحیح کند.

اُریب‌زدایی (Deskewing)ویرایش

در ارسال دیجیتال داده‌ها، اگر کلاک، موازی با داده فرستاده شود، می‌توان از آن برای نمونه‌برداری از سیگنال باینری حامل داده‌ها استفاده کرد. ازآنجاکه کلاک باید پیش‌ازاین‌که به فلیپ‌فلاپ‌هایی که از سیگنال باینری دریافت‌شده نمونه برمی‌دارند اعمال شود، دریافت و تقویت شود، یک تأخیر (وابسته به فرایند، دما، و ولتاژ) میان لبۀ کلاک و لبۀ بیت‌های دریافت‌شده پدید می‌آید. یکی از راه‌های حذف این تاخیر، گنجاندن یک PLL در گیرنده است، به‌طوری‌که کلاک فلیپ‌فلاپ با کلاک دریافت‌شده، هم‌فاز شود. در این کاربرد، از حلقۀ قفل‌شدۀ تأخیر (delay locked loop, DLL) استفاده می شود.

تولید کلاکویرایش

بسیاری از سیستم‌های الکترونیک، پردازنده‌هایی دارند که در صدها مگاهرتز کار می‌کنند. رایج است که کلاک این پردازنده‌ها از PLL‌ تولیدکننده کلاک بیایند، که یک کلاک مرجع با فرکانس کم (معمولاً 50 یا 100 مگاهرتز) را تا فرکانس کاری پردازنده، چندین برابر می‌کند. در مواردی که فرکانس کاری چند گیگاهرتز و فرکانس مرجع، ده‌ها یا صدها مگاهرتز باشد، ضریب چندبرابرشدن می‌تواند بسیار بزرگ باشد.

توزیع کلاکویرایش

کلاک مرجع به چیپ وارد شده و PLL را تحریک می‌کند. توزیع کلاک معمولاً متوازن است به گونه‌ای که کلاک در هر نقطه پایانی به‌طور هم‌زمان می‌رسد. یک از نقاط پایانی، ورودی بازخورد PLL است. تابع PLL باید کلاک توزیع شده را با کلاک مرجع آمده، مقایسه کند و فاز و فرکانس خروجی اش را تغییر دهد تا اینکه کلاک مرجع و کلاک بازخورد، فاز و فرکانس منطبق با هم شده باشند. از دیدگاه نظریه کنترل، PLL یک مورد خاص از «فیلتر کالمن» (Kalman) است. PLLها در همه جا هستند؛ آن‌ها کلاک‌ها را به خوبی کلاکی که در قسمت‌های کوچکی از چیپ‌های منفرد توزیع می‌شوند، در سیستم‌ها پخش می‌کنند.

گاهی اوقات کلاک مرجع، اصلاً نمی‌تواند یک کلاک الگو باشد، بلکه یک رشته اطلاعاتی با انتقال کافی است که PLL را قادر می‌سازد تا یک کلاک منظمی را از آن رشته، بازیابی کند. گاهی کلاک مرجع همان فرکانسی است که آن کلاک از طریق توزیع کلاک بدست آورده، کلاک‌های دیگر ناشی از کلاک توزیعی ممکن است، کلاک مرجع چندگانه باشند.

کاهش اختلال و نویزویرایش

یک خاصیت مطلوب تمام PLL این است که لبه‌های کلاک بازخورد و کلاک مرجع، در یک ریف خیلی نزدیک قرار می‌گیرند اختلاف متوسط کلاک بین فازهای دو سیگنال در زمانی که PLL کلاک را بدست آورده static phase offset نامیده می‌شود. واریانس بین این دو فاز را tracking jitter می‌نامند. فاز آفست ایستا (static phase offset) باید صفر باشد و tracking jitter نیز باید تا حد ممکن پایین باشد.

نویز فاز (Phase noise) نوعی دیگر از اختلال است که در PLLها مشاهده می‌شود و بیشتر توسط سازه‌های تقویت‌کنندهٔ به کار رفته در مدار، به وجود می‌آید. بعضی تکنولوژی‌ها شناخته شده‌اند تا بهتر از دیگران در این زمینه، کار انجام دهیم. بهترین PLLهای دیجیتالی با سازه‌های منطقی امیتر کوپل شده (ECL) با هزینه مصرف بالا، ایجاد می‌شوند. برای پایین نگه داشتن نویز از در مدارهای PLL، بهتر است تا از اشباع مدارهای منطقی مثل TTL یا CMOS اجتناب کنیم.

خاصیت مطلوب دیگر تمام PLLها این است که فاز و فرکانس ناشی از کلاک تولید شده، با تغییرات سریع ولتاژ تغذیه و خطوط زمین، تأثیری نخواهد داشت، و ولتاژ سابستریت که از روی آن مدارهای PLL ساخته شده‌اند، (نیز با این تغییرات)، تأثیر نمی‌گیرند. این خاصیت را دفع نویز ورودی و سابستریت می‌نامند. هرچه میزان دفع نویز بیشتر باشد، بهتر است.

دیگر کاربردهاویرایش

موارد دیگر استفاده PLL:

  • سینتی سایزر فرکانس برای تنظیم دیجیتالی فرستنده گیرنده‌های رادیویی
  • دمدولاسیون سیگنال‌های AM و FM
  • بهبود سیگنال‌های کوچکی که بدون PLL در نویز، کم می‌شود.
  • بازیابی اطلاعات منبع کلاک از رشته اطلاعاتی مثل اطلاعات حاصله دیسک درایو
  • ضرب کلاک در میکروپروسسورهایی که به سازه پردازشگر داخلی اجازه می‌دهد تا سریعتر از ارتباطات خارجی حرکت کند، در حالی که ارتباطات کلاکی دقیق را حفظ می‌کند.
  • دکودرهای DTMF، مودم‌ها و دیگر دکودرهای تُن، برای کنترل و ارتباطات از راه دور

جستارهای وابستهویرایش

منابعویرایش