آبهای زیرزمینی
آبهای زیرزمینی به آبهایی گفته میشود که در لایههای آبدار و اشباع زیر زمین تجمع پیدا کردهاست. این آبها فقط حدود ۴ درصد از مجموعه آبهایی را که فعالانه در چرخهٔ آبشناختی دخالت دارند، تشکیل میدهد. با این وجود حدود ۵۰ درصد جمعیت دنیا از نظر آب شرب متکی به همین آبهای زیرزمینی هستند.

آب زیرزمینی، آب موجود در زیر سطح زمین، منافذ خاک و شکستگیهای تشکیلات سنگی است. هنگامی که یک واحد سنگی یا یک رسوب غیر محکم (کانسار) آورد قابل توجهی از آب ایجاد کند، آبخوان نامیده میشود. عمقی که در آن، منافذ خاک یا شکستگیها و حفرههای موجود در سنگها کاملاً از آب اشباعشده باشند، سطح ایستابی خوانده میشود. آب زیرزمینی از سطح تغذیه میشود؛ و ممکن است در سطح زمین نیز به صورت طبیعی در قالب چشمهها و تراوشات طبیعی تخلیه شده و واحهها یا تالابهایی را به وجود آورد. آب های زیرزمینی، اغلب برای مصارف کشاورزی، شهری و صنعتی از طریق چاه برداشت میشوند. مطالعهٔ توزیع و حرکت آب های زیرزمینی، آبزمینشناسی یا هیدرولوژی آب زیرزمینی نامیده میشود.
معمولاً، تصور بر این است که آب زیرزمینی، آب جاری موجود در آبخوان های کم عمق است اما از نظر فنی، رطوبت خاک، لایههای منجمد آب در خاک، آب راکد در سنگ بستر با نفوذپذیری خیلی اندک و آب عمیق زمینگرمایی (ژئوترمال) یا سازندهای نفتی را نیز شامل می شود. احتمالاً قسمت اعظم زیرزمین حاوی مقداری آب است که در بعضی موارد ممکن است با مایعات دیگر مخلوط شده باشد. آب زیرزمینی فقط محدود و منحصر به زمین نیست. احتمالاً ایجاد بعضی از اشکال زمینی در مریخ متأثر از آب زیرزمینی است. شواهدی مبنی بر وجود آب مایع در سطح زیرین اروپا قمر سیارهٔ مشتری نیز وجود دارد.[۱]
اغلب، دسترسی به آب زیرزمینی نسبت به آب سطحی ارزانتر، راحتتر و مناسب تر و مستعد آلودگی کمتری است. از این رو، معمولاً برای تأمین آب از آن استفاده می شود. مثلاً، در ایالات متحده، آب زیرزمینی، بزرگترین منبع آب مصرفی را تأمین می کند و کالیفرنیا سالانه بیشترین میزان آب زیرزمینی نسبت به همهٔ ایالتهای آمریکا را برداشت می کند.[۲] مخازن آب زیرزمینی حاوی مقدار آب بسیار بیشتری نسبت به ظرفیت همه مخازن سطحی و دریاچههای ایالات متحده از جمله دریاچههای بزرگ میباشد. مقدار زیادی از آب شهری صرفاً از آب زیرزمینی تأمین میشود.[۳]
آب زیرزمینی آلوده کمتر به چشم میآید و نسبت به آلودگی در رودخانهها و دریاچهها سختتر پاکسازی می شود. آلودگی آب زیرزمینی اغلب نتیجه دفع نادرست زبالهها در زمین است. مواد شیمیایی صنعتی و خانگی و محلهای دفن زباله، استفاده بیش از حد از کودها و آفتکشها در کشاورزی، تالاب های مواد زائد صنعتی (پساب های صنعتی)، پسماندها و فاضلاب فرآوری شده معادن، fracking صنعتی، گودالهای آب نمکی میدان نفتی، نشت مخازن ذخیره و خطوط انتقال نفتی، شیرابه فاضلاب شهری و سیستمهای سپتیک منابع اصلی (آلودگی) میباشد.
لایه آبدار و آبخوانویرایش
بخشی از آبهای سطحی در اثر نیروی جاذبه وارد محیط متخلخل خاک شده و به سمت پایین حرکت میکنند. لایههای مختلف زمین از مواد و ترکیبات مختلف خاک شکل گرفته و در زمانهای مختلف به وجود آمدهاند. مجموعه عواملی نظیر جنس و اندازه دانهها، میزان تخلخل، میزان تراکم، میزان ترکخوردگی و … باعث میشود، بخشهای مختلف فضای زیرزمین ظرفیتهای متفاوتی برای جذب، ذخیره و انتقال آب داشته باشند. لایههایی از زمین که به صورت نسبی ظرفیت بالاتری برای جذب، ذخیره و انتقال آب دارند، آبخوان نامیده میشوند. به دلیل نفوذپذیری بیشتر این لایهها، بخش اعظم آب نفوذ کرده در عمق زمین، به صورت طبیعی جذب آنها میشود. بسته به شرایط احاطهکننده آن، یک لایه آبدار میتواند مانند یک مخزن زیرزمینی آب را ذخیره یا مانند یک رودخانه زیرزمینی آب را به لایههای مجاور و عمیقتر منتقل نماید. ابعاد این مخازن یا رودخانههای زیرزمینی میتوانند از چند ده متر تا چند صد کیلومتر متفاوت باشد. به دلیل وابستگی شدید انسان به منابع زیرزمینی آب، شناسایی، مطالعه و مدیریت لایههای آبدار دارای اهمیت بسیارزیادی است.
آبخوان لایه ای با بستر متخلخل و حاوی آب زیرزمینی است که آن را انتقال می دهد. هنگامی که آب مستقیماً بین سطح و ناحیه اشباع شده آبخوان جریان یابد، آبخوان آزاد است. به دلیل وجود نیروی گرانش که باعث جریان رو به پایین آب می شود، بخش های عمیق تر آبخوان های آزاد، معمولاً اشباع تر هستند. سطح بالایی این لایه اشباع شده از آبخوان آزاد، سطح ایستابی یا سطح آب اشباع نامیده می شود. زیر سطح ایستابی، جایی که همه منافذ کاملاً از آب اشباع شده اند، منطقه آب اشباع است. لایهای با تخلخل کم که امکان انتقال محدود آب زیرزمینی را فراهم می کند تحت عنوان aquitard شناخته می شود. Aquiclude لایهای است با تخلخل بسیار کم که در واقع نسبت به آب زیرزمینی غیر قابل نفوذ است. آبخوان تحت فشار، سفره آبی است که توسط یک لایه نسبتاً غیر قابل نفوذ از سنگ یا بستری مثل aquiclude یا aquitard پوشیده شده است. اگر یک آبخوان محدود از منطقه تغذیه خود به یک لایه پایین تر جریان یابد، آب زیرزمینی در مسیر جریان خود تحت فشار قرار می گیرد. این امر به ایجاد چاه های آرتزین منجر می شود که آب در آنها آزادانه و بدون نیاز به پمپ، جریان می یابد و به ارتفاع بالاتری نسبت به سطح ایستابی استاتیک آبخوان آزاد واقع در بالای خود فواره خواهد زد.
ویژگی های آبخوان ها از نظر زمین شناسی و ساختار و توپوگرافی لایهای که در آن شکل می گیرند، متفاوت است. به طور کلی، آبخوان های پرآب تر در سازه های رسوبی ایجاد می شوند. در مقایسه، سنگ های کریستالی هوازده و شکسته شده مقدار کمتری آب زیرزمینی را در خود جا میدهند. مواد آبرفتی که رسوبات اصلی در درهها هستند و در دره های اصلی رودخانه جمع شده اند، از پربارترین منابع آب زیرزمینی هستند. ظرفیت گرمایی ویژه آب و اثر عایق بندی خاک و سنگ می تواند تأثیر اقلیم را بر آب کاهش داده و دمای آب زیرزمین را نسبتاً ثابت نگاه دارد. در مناطقی که دمای آب زیرزمینی با این اثر در حدود c˚10 یا (F˚50) حفظ می شود، برای کنترل دمای داخل سازه ها در سطح، می توان از آب زیرزمینی استفاده کرد. مثلاً، در هوای گرم، آب زیرزمینی نسبتاً خنک می تواند از طریق رادیاتورها در یک خانه پمپ شود و سپس در چاه دیگری به زمین برگردانده شود. در طی فصول سرد، به دلیل اینکه آب زیرزمینی نسبتاً گرم است، آب در مسیری مشابه به عنوان منبع حرارتی برای پمپ های گرمایی که نسبت به استفاده از هوا کارآمدتر هستند، مورد استفاده قرار می گیرد.
حجم آب زیرزمینی یک آبخوان با اندازه گیری سطوح آب در چاههای محلی و با بررسی سوابق زمین شناسی ثبت شده از چاههای حفاری به منظور تعیین میزان، عمق و ضخامت رسوبات و سنگ های حامل آب، تخمین زده میشود. قبل از سرمایه گذاری در چاههای بهرهبرداری، چاههای آزمایشی حفر می شوند تا عمق هایی که در آن به آب می رسیم اندازه گیری شده و نمونه های خاک، سنگ و آب برای آنالیزهای آزمایشگاهی جمع آوری شوند. همچنین آزمایشات پمپاژ در چاههای آزمایشی برای تعیین ویژگی های جریان آبخوان انجام می شود.[۳]
اشکال مختلف آبهای زیرزمینیویرایش
اشکال مختلف آب در زیرزمین
- آب هیگروسکوپی: آبی است که به صورت قطرههای ریز در اطراف دانههای رسوب میچسبد.
- آب غشایی: آبی است که به صورت یک قشر نازک، اطراف دانههای رسوب را میپوشاند.
- آب ثقلی: آبی است که اطراف و بین دانههای رسوب را پر میکند و اگر امکان حرکت برایش وجود داشته باشد از محل خود تحت تأثیر نیروی جاذبه زمین یا ثقل، حرکت کرده و جریان مییابد.
- آب مویینگی: بخشی از آب است که بر روی سطح آب زیرزمینی و سوار برآن، در میان رسوبات دانه ریز قرار میگیرد. رسوبات دانه ریز، فضای لوله مانند و پیچ و خم داری ایجاد میکنند که تحت تأثیر نیروی موئینگی، بخشی از آب زیرزمینی را در خلاف جهت نیروی ثقل تا ارتفاع چندین متری به بالا میکشند. ضخامت آب موئینگی به قطر دانههای رسوب بستگی داشته و هرچه دانههای رسوب ریزتر باشند ضخامت قشر موئینگی نیز بیشتر خواهدبود.[۴]
چرخه آبویرایش
آب زیرزمینی حدود 30 درصد از منابع آب شیرین جهان که تقریباً 0/76 درصد از کل آب جهان که شامل اقیانوس ها و یخ های دائمی است را تشکیل می دهد.[۵][۶] ذخایر آب زیرزمینی جهان تقریباً برابر با کل میزان آب شیرین ذخیره شده در بسته های برفی و یخی از جمله قطب های شمال و جنوب می باشد. این امر، آب زیرزمینی را به منبعی مهم تبدیل می کند که به عنوان یک ذخیره طبیعی عمل کرده و در کمبود آب سطحی مانند مواقع خشکسالی می تواند مؤثر باشد و مانند بافر عمل می کند. آب زیرزمینی به طور طبیعی توسط آب سطحی ناشی از بارش، جویبارها و رودخانه ها تغذیه می شود تا زمانی که به سطح ایستابی برسد. برخلاف مخازن کوتاه مدت مثل آب شیرین سطحی و اتمسفری (از چند دقیقه تا سال ها ماندگاری)، آب زیرزمینی، مخزن و ذخیره ای بلند مدت از چرخه طبیعی آب (از روزها تا هزاران سال ماندگاری [۷][۸]را میتواند فراهم کند.
حوضه بزرگ آرتزین (GAB) در استرالیای مرکزی و شرقی یکی از بزرگترین سیستم های آبخوان تحت فشار در جهان می باشد که تقریباً 2 میلیون کیلومترمربع امتداد دارد. متخصصان هیدروژئولوژی با تجزیه و تحلیل عناصر کمیاب موجود در آبی که از عمق زمین گرفته شده است، توانسته اند مشخص کنند که آب حاصل از این آبخوان ها می تواند بیش از یک میلیون سال قدمت داشته باشد. هیدروژئولوژیست ها با مقایسه قدمت آب زیرزمینی بخش های مختلف GAB دریافتند که این قدمت در طول حوضه افزایش می یابد. در امتداد قسمت شرقی که آبخوان ها تغذیه می شود، قدمت کمتر است. همانطور که آب زیرزمینی به سمت غرب در سراسر قاره، جریان می یابد، قدمت آب افزایش می یابد و قدیمی ترین آب های زیرزمینی در بخش های غربی واقع شده اند. یعنی آب زیرزمینی برای اینکه بتواند حدود 1000 کیلومتر مسافت را از محل تغذیه خود در عرض یک میلیون سال طی کرده باشد باید با سرعت متوسط حدود 1 متر در سال حرکت کند.
مطالعات اخیر نشان میدهد که تبخیر آب زیرزمینی می تواند نقش بسیار مهمی در چرخه آب محلی به ویژه در نواحی خشک ایفا کند.[۹] دانشمندان در عربستان سعودی طرح هایی را برای بازیابی و بازیافت این رطوبت تبخیری جهت آبیاری محصولات زراعی پیشنهاد داده اند. در عکس مقابل یک فرش منعکس کننده 50 سانتی متر مربعی ساخته شده از مخروط های پلاستیکی کوچک کنار هم به مدت 5 ماه در یک منطقه بیابانی خشک بدون گیاه، بدون باران و آبیاری قرار داده شد. این طرح موفق شد که به میزان کافی تبخیر زمینی را به دام بیندازد و متراکم کند تا به بذرهایی که به طور طبیعی در زیر آن مدفون شده اند، با فضای سبزی حدود 10 درصد مساحت فرش، حیات بخشد. پیش بینی می شود اگر بذرها قبل از قرار دادن این فرش کاشته شوند، منطقه وسیع تری سبز خواهد شد.[۱۰]
مخاطرات آبهای زیرزمینیویرایش
به دلیل عدم شناخت صحیح یا عدم درک میزان آسیبپذیری سریع آبهای زیرزمینی، سهل انگاریهای زیادی صورت گرفتهاست. اجازه دادهایم که بنزین و سایر مایعات مضر از مجاری زیرزمینی به درون سفرههای آبهای زیرزمینی نفوذ کند. آلایندهها، از محلهای دفن زباله یا سیستمهای فاضلاب که بهطور غلطی ساخته شدهاند، به داخل آن تراوش میکنند. آبهای زیرزمینی از طریق زهاب حاصله از مزارع کشاورزی کود داده شده و مناطق صنعتی، آلوده میشوند. صاحبان خانهها با ریختن مواد شیمیایی به داخل فاضلاب یا روی زمین، آبهای زیرزمینی را آلوده میکنند. آبهای زیر زمینی در طی روند نفوذ خود به لایههای آبدار بسته به نوع خاک و آلایندههای موجود در خاک ممکن است حاوی مواد معدنی و آلی شوند. به عنوان مثال زمینهای آهکی چون دارای کربنات و بی کربنات هستند، آبهایی که از این نوع زمینها نفوذ میکنند حاوی کربنات و بی کربنات بوده و سختی آب را بالا میبرند. یا اینکه در اثر نفوذ مواد آلاینده نظیر آلایندههای نفتی در سطح زمین یا چاههای جذبی فاضلاب ممکن است در اثر نفوذ، این مواد به سطح آبهای زیر زمینی رسیده و منبع آب را آلوده نمایند.
استفاده از آب زیرزمینی در سراسر جهان با مشکلات خاصی مواجه است. درست همانطور که آب رودخانه در بسیاری از مناطق جهان بیش از حد مورد استفاده قرار گرفته و آلوده شدند، آبخوان ها نیز چنین مشکلی دارند. تفاوت عمده این است که آبخوان ها خارج از محدوده دید هستند. مشکل اصلی دیگر این است که آژانس های مدیریت آب، هنگامی که "آبدهی پایدار" آبخوان و آب رودخانه را محاسبه می کنند، غالباً همان آب را دو بار، یک بار در آبخوان و یک بار در رودخانه متصل شونده (به آن آبخوان) به حساب می آورند. مثلاً در استرالیا قبل از اینکه اصلاحات قانونی براساس چارچوب اصلاح آب مصوب شورای دولت های استرالیا در دهه 1990 آغاز شود، بسیاری از ایالات استرالیا از طریق سیاست های دولتی جداگانه، که دارای ارتباطات ضعیف و رقابتی بودند، آب سطحی و زیرزمینی را اداره می کردند.
اثرات اضافه برداشت از آب زیرزمینی اگرچه واقعاً غیر قابل انکار است دهه ها یا قرن ها زمان می برد تا آشکار شود. در یک مطالعه کلاسیک در سال 1982، Bredhoeft و همکارانش[۱۱] موقعیتی را طراحی کردند که استخراج آب زیرزمینی در یک حوضه بین قاره ای، برابر با کل میزان تغذیه سالانه بود و چیزی برای پوشش گیاهی که طبیعتاً وابسته به آب زیرزمینی است باقی نمیگذاشت. با نزدیکتر کردن محل برداشت آب به پوششهای گیاهی، 30 درصد تقاضای اصلی پوشش گیاهی به دلیل تأخیر در حرکت آب زیرزمینی تا 100 سال تأمین میشد و در پانصدمین سال این میزان به 0% کاهش می یافت که نشان دهنده مرگ کامل پوشش گیاهی وابسته به آب زیرزمینی بود. علم لازم برای انجام این محاسبات ده ها سال در دسترس بوده است؛ با این حال، آژانس های مدیریت آب، عموماً اثراتی را که خارج از بازههای زمانی انتخابات سیاسی ظاهر میشوند (3 تا 5 سال) نادیده میگیرند. پژوهشگران قویا استدلال کرده اند که آژانس های مدیریتی باید محدوده های زمانی مناسب را در برنامه ریزی آب زیرزمینی بکار گیرند.[۱۱] این به معنی محاسبه مجوزهای برداشت آب زیرزمینی بر اساس دهه ها و گاهی اوقات قرن ها خواهد بود.
همانطور که آب در سطح زمین حرکت می کند، نمک های محلول به خصوص سدیم کلرید را جمع می کند. جایی که این آب از طریق تبخیر و تعرق وارد اتمسفر می شود، این نمک ها باقی می مانند. در مناطق آبیاریشده، زهکشی ضعیف خاک ها و آبخوان های کمعمق منجر به بالا آمدن سطح ایستابی به لایه سطحی در مناطق کم عمق می شود. مشکلات اصلی تخریب زمین ناشی از شوری خاک و آبگرفتگی با افزایش سطوح نمک در آب های سطحی همراه میشود. در نتیجه، آسیب اصلی به اقتصادهای محلی و محیط های طبیعی وارد میگردد.[۱۲]
در اینجا لازم است تا چهار اثر مهم مختصراً ذکر شوند. اول، راهکارهای کاهش سیل، که به منظور حفاظت از زیرساخت های ایجاد شده بر روی دشت های سیلابی بکار گرفته میشوند، پیامد ناخواستهای بر کاهش تغذیه آبخوان به همراه دارند. دوم، کاهش و تخلیه طولانی مدت آب زیرزمینی در آبخوان های وسیع به فرونشست زمین و آسیب های زیرساختی منجر می شود. سوم، تداخل آب شور، چهارم، زهکشی خاک های حاوی اسید سولفات که اغلب در دشت های ساحلی کم عمق وجود دارند، به اسیدی شدن و آلودگی جریان های رودخانه ای منجر می شود.[۱۳]
یکی دیگر از دلایل نگرانی این است که افت آب زیرزمینی در آبخوان های بهرهبرداری شده، این پتانسیل را دارد که آسیب شدیدی به اکوسیستم های خاکی و آبی وارد کند – در بعضی موارد بسیار واضح و آشکار است اما در سایر موارد به دلیل طولانی بودن زمانی که خسارت و آسیب در آن رخ می دهد، کاملاً غیر منتظره است.[۱۴]
برداشت بیش از حدویرایش
منابع زیرزمینی آب به صورت مستقیم یا غیرمستقیم از آبهای سطحی و بارندگی تغذیه میشوند؛ بنابراین استفاده پایدار از این منابع به معنای برداشت محدود از آنهاست. در سالهای اخیر در بسیاری از کشورهای جهان برداشت آب از منابع زیرزمینی از میزان تغذیه سالیانه آنها بیشتر است. این امر به معنای استخراج و استفاده از آبی است که در طول هزاران سال در لایههای آبدار زمین ذخیره شدهاست. با این کار سطح آبهای زیرزمینی در منطقه روز به روز افت کرده و سرانجام به جایی خواهد رسید که آبی برای استخراج وجود نخواهد داشت. پایین افتادن سطح آبهای زیرزمینی به معنای خشک شدن مناطق پایین دست (مناطق با ارتفاع کمتر که آب جاری در لایههای آبدار تحت اثر گرانش به سمت آنها جریان مییابند) و از بین رفتن چاهها، قناتها و چشمههای آن است. بارزترین مشکل (تا آنجایی که به استفاده انسانی از آب زیرزمینی مربوط می شود) پایین آمدن سطح ایستابی فراتر از دسترسی چاههای موجود می باشد. در نتیجه، برای رسیدن به آب زیرزمینی، چاهها باید عمیق تر شوند؛ در بعضی مناطق (مثل کالیفرنیا، تگزاس و هند) سطح ایستابی به دلیل پمپاژ گسترده چاه، صدها پا افت داشته است.[۱۵] مثلاً در منطقه پنجاب هند از سال 1979 سطح آب زیرزمینی 10 متر افت داشته و نرخ تخلیه شتاب گرفته است.[۱۶] در سال ۲۰۰۵ (میلادی) چین، هند و ایران رتبههای اول تا سوم برداشت بیش از حد از منابع زیرزمینی آب را داشتهاند. ایران بهطور متوسط سالانه پنج میلیارد مترمکعب آب بیش از ظرفیت لایههای آبدار زمین از آنها بهرهبرداری میکند. این مقدار آب معادل آب مورد نیاز جهت تولید یک سوم کل غله تولیدی این کشور است. سطح آبهای زیرزمینی در منطقه چناران در شمالشرقی ایران، که منطقه کوچک اما بسیار پراهمیتی برای کشاورزی است، در سالهای پایانی دهه نود میلادی به صورت میانگین ۲٫۸ متر در سال افت داشتهاست. چاههای حفر شده جهت تأمین آب کشاورزی و همچنین تأمین آب آشامیدنی شهر مشهد عامل این اتفاق بودهاند.
آب زیرزمینی از نظر اکولوژیکی نیز مهم است. اهمیت آب زیرزمینی برای اکوسیستم ها حتی توسط بیولوژیست های آب شیرین و اکولوژیست ها اغلب نادیده گرفته می شود. آب های زیرزمینی معمولاً موجب پایداری رودخانه ها، تالاب ها، دریاچه ها و همچنین اکوسیستم های زیرزمینی در آبخوان های کارست یا آبرفتی، می شوند.
البته همه اکوسیستم ها به آب زیرزمینی وابسته نیستند. برخی اکوسیستم های زمینی–مثلاً آنهایی که در بیابانهای باز و محیط های خشک مشابه هستند— در مناطقی وجود دارند که بارندگی های نامنظم دارند و رطوبت مورد نیاز از طریق رطوبت موجود در هوا تکمیل می شود. اگر چه اکوسیستم های خاکی دیگری در محیط های پذیرنده تری که آب زیرزمینی هیچ نقش مرکزی برای آنها ایفا نمیکند، حیات دارند، اما در حقیقت آب زیرزمینی برای بسیاری از اکوسیستم های اصلی جهان ضروری است. آب، بین منابع زیرزمینی و سطحی جریان می یابد. اکثر رودخانه ها، دریاچه ها و تالاب ها با آب زیرزمینی تغذیه می شوند و (در مکان ها یا زمان های دیگر) در درجات مختلفی آب زیرزمینی را تغذیه می کنند. آب زیرزمینی از طریق نفوذ، رطوبت خاک را تغذیه می کند و بسیاری از پوشش های گیاهی حداقل برای بخشی از سال مستقیماً به آب زیرزمینی یا رطوبت خاک نفوذ یافته بالای آبخوان وابسته هستند. مناطق hyporheic و مناطق ساحلی مثال هایی از اکوتون هایی هستند که به طور کامل یا به میزان بالایی به آب زیرزمینی وابسته هستند.
فرونشستویرایش
فرونشست وقتی اتفاق می افتد که مقدار زیادی آب از زیر زمین برداشت شود، فضای زیر سطح بالایی خالی و درنتیجه باعث فروپاشی زمین می شود. نتیجه این اتفاق در نقاطی از زمین، شبیه دهانه های آتشفشان قابل مشاهده است. دلیل فرونشست این است که، در حالت تعادل طبیعی، فشار هیدرولیکی آب زیرزمینی، در منافذ آبخوان و aquitard، مقداری از وزن رسوبات پوشاننده را تحمل می کند. هنگامی که آب زیرزمینی آبخوان ها با پمپاژ بیش از حد حذف می شود، فشارهای منافذ در آبخوان افت می کند و فشرده سازی و تراکم آبخوان رخ می دهد. اگر فشارها برگردند، این تراکم تا حدی قابل بازیابی است اما اکثر آنها قابل بازیابی نیستند. هنگامی که آبخوان متراکم شود، باعث فرونشست زمین، پایین رفتن یا افت سطح زمین می شود. شهر Louisiana متعلق به New Orleans امروزه واقعاً پایین تر از سطح دریاست و فرونشست آن تا حدی با حذف آب زیرزمینی از نظام های مختلف آبخوان و aquitard زیر آن ایجاد شده است.[۱۷] در نیمه اول قرن بیستم، San Joaquin Valley فرونشست چشمگیری را به علت حذف آب زیرزمینی و در بعضی مکان ها تا 8/5 متر (28 پا) تجربه کرد.[۱۸] شهرهایی که در دلتای رودخانه ها واقع شده اند از جمله ونیز در ایتالیا و بانکوک در تایلند فرونشست را تجربه کرده اند؛ مکزیکوسیتی که در بستر یک دریاچه ساخته شده است، درجاتی از فرونشست تا 40 سانتی متر در سال را تجربه کرده است.[۱۹]
تداخل آب دریا/شورویرایش
تداخل آب دریا، یعنی جریان یافتن یا حضور آب دریا به داخل آبخوان ساحلی؛ نفوذ آب دریا، یک مورد از نفوذ آب شور می باشد. این امر یک پدیده طبیعی است اما می تواند توسط عوامل انسانی ایجاد و یا تشدید شود. در مورد سفره های آب همگن، نفوذ آب دریا میتواند ناحیه شوری را زیر یک ناحیه آب زیرزمینی شیرین ایجاد کند، و با جریان آب، موجب شوری آب شیرین شود.[۲۰][۲۱]
آلودگیویرایش
آب زیرزمینی آلوده کمتر دیده می شود اما پاکسازی دشوارتری به نسبت آلودگی در رودخانه ها و دریاچه ها دارد. آلودگی آب زیرزمینی غالباً نتیجه دفع نادرست زباله ها در زمین است. مواد شیمیایی صنعتی و خانگی و محل های دفن زباله، تالاب های مواد زائد صنعتی (پساب های صنعتی)، پسماندها و فاضلاب فرآوری شده معادن، گودال های آب نمکی میدان نفتی، نشت مخازن ذخیره و خطوط انتقال نفتی زیر زمین، شیرابه فاضلاب شهری و سیستم های سپتیک و آلوده، منابع اصلی (آلودگی) می باشند. برای تعیین میزان آلودگی و کمک به طراحی سیستم های ترمیم و اصلاح آب زیرزمینی، با نمونه برداری از خاک و آب زیرزمینی نزدیک منابع آلودگی مشکوک یا شناخته شده، آب زیرزمینی آلوده نقشه برداری میشود. برای جلوگیری از آلودگی آب زیرزمینی نزدیک منابع بالقوه (آلاینده) مثل محل های دفن زباله نیاز است که کف محل دفن زباله با مواد ضد آب پوشانده شود، هر نوع شیرابه توسط زهکشی جمع آوری و آب باران از هرگونه آلاینده های احتمالی حفظ شود و پایش منظم آب زیرزمینی مجاور به منظور عدم نشت آلاینده ها به آب زیرزمینی، صورت گیرد.[۳]
آلودگی آب زیرزمینی از آلاینده های رها شده در زمین که می توانند راه خود را به سمت آب زیرزمینی پیدا کنند، یک توده یا ستون آلاینده درون آبخوان ایجاد می کند. آلودگی، میتواند از محل دفن زباله، آرسنیکی موجود، سیستم های بهداشتی واقع در بالای آبخوان، یا منابع دیگر مثل پمپ های بنزین با مخازن ذخیره نشتی زیر زمینی یا فاضلاب شتی ایجادشود.
حرکت و انتشار آب درون آبخوان، آلاینده ها را در منطقه وسیع تری پخش کرده و گسترش می دهد؛ مرز پیشرفت آن اغلب لبه ستون (plume edge) نامیده می شود، که می تواند با چاههای آب زیرزمینی یا آب سطحی مثل تراوشات طبیعی و چشمه ها تلاقی یابد و منابع آب را برای انسان ها و حیات وحش ناسالم سازد. در آلودگی آب زیرزمینی، سازوکارهای متفاوتی مثل انتشار، جذب، بارش، فروپاشی و پوسیدگی، در انتقال آلاینده ها مؤثر هستند. اثر متقابل آلودگی آب زیرزمینی با آب های سطحی با استفاده از مدلهای انتقال آلودگی هیدرولوژیکی بررسی میشوند. خطر آلودگی منابع شهری را میتوان با جاگیری و قرار دادن چاهها در مناطق عمیق آب زیرزمینی و خاک های نفوذناپذیر و آزمایش دقیق و پایش آبخوان و منابع آلودگی بالقوه مجاور، به حداقل رساند.[۳]
آرسنیک و فلورایدویرایش
حدود 1/3 درصد از آب آشامیدنی جهان از منابع آب زیرزمینی تأمین می شود. از این مقدار، حدود 10 درصد، تقریباً 300 میلیون نفر، آب را از منابع آب زیرزمینی که به شدت با آرسنیک و فلوراید آلوده هستند برداشت میکنند.[۲۲] این عناصر کمیاب اساساً از منابع طبیعی توسط فرایند سنگشویی صخره ها و رسوبات مشتق می شوند.
روش جدید شناسایی موادی که برای سلامتی خطرناک هستند:
در سال 2008 مؤسسه تحقیقات آبی سوئیس، Eawag، روشی جدید برای ساخت نقشه های خطر در مورد مواد سمی ژئوژنیکی در آب زیرزمینی ارائه داد.[۲۳][۲۴][۲۵] این امر راهی مؤثر برای تعیین اینکه کدام چاهها باید مورد آزمایش قرار گیرند را فراهم می کند. در سال 2016، این گروه تحقیقاتی، دانش خود در مورد ارزیابی بستر آب زیرزمینی GAP را به صورت رایگان در دسترس همگان قرار دادند. این امر به متخصصان سراسر جهان امکان بارگذاری داده های اندازه گیری شده، نمایش بصری آنها و تولید نقشه های خطر برای مناطق مورد نظر (انتخاب های خود) را فراهم میکند. GAP به عنوان یک انجمن تبادل دانش به منظور امکان توسعه بیشتر روش های حذف مواد سمی از آب، خدمت می کند.
مقرراتویرایش
ایالات متحدهٔ آمریکاویرایش
در ایالات متحده، قوانین مربوط به مالکیت و استفاده از آب زیرزمینی معمولاً قوانین ایالتی هستند؛ با این حال قوانین آب زیرزمینی برای به حداقل رساندن آلودگی آب زیرزمینی توسط آژانس حفاظت از محیطزیست (EPA) در هر دو سطح ایالتی و فدرال وضع میشود. حقوق مالکیت و استفاده از آب زیرزمینی معمولاً یکی از سه نظام اصلی زیر را دنبال میکند:
- قانون برداشت، امکان برداشت آب زیرزمینی به اندازهای که مصرف سودمند داشته باشند را به هر مالک زمین میدهد اما هیچ مقدار مشخصی از آب را تضمین نمیکند. در نتیجه مالکان چاه هیچ پاسخگویی در قبال بهرهبرداری از آب های زیرین همسایگان خود ندارند. قوانین ایالتی اغلب «استفادهٔ سودمند» را تعریف میکنند و گاهی اوقات محدودیتهای دیگری را اعمال میکنند مثل مجوز ندادن به استخراج آب زیرزمینی که باعث فرونشست زمین مجاور میشود.
- حقوق مالکیت خصوصی محدود، مشابه حق مجاورت در یک جریان سطحی. میزان حق آب زیرزمینی مبتنی است بر مساحت زمین و هر مالک مقدار متناظری از آب موجود را به دست می آورد. پس از حکم (تصمیم گیری)، بیشترین میزان حق آب تعیین می شود اما این حق، اگر که کل مقدار آب موجود و در دسترس کاهش یابد که احتمال آن در خشکسالی وجود دارد، کاهش مییابد. مالکان زمین، به دلیل تجاوز به حقوق آب زیرزمینیشان می توانند از دیگران شکایت کنند و اولویت استفاده از آب پمپاژ شده برای استفاده در زمینهایی است که از آنها پمپاژ صورت میگیرد.
- در نوامبر ۲۰۰۶، آژانس حمایت از محیط زیست، قانون آب زیرزمینی در ثبت فدرال ایالات متحده را منتشر کرد. EPA نگران بود که سیستم آب زیرزمینی در معرض آلودگی ناشی از مدفوع باشد. نکتهٔ اصلی این قانون این بود که پاتوژنهای میکروبی از منابع آب عمومی دور نگاه داشته شوند.[۲۶] قانون آب زیرزمینی ۲۰۰۶ اصلاحیهٔ سند آب آشامیدنی سالم ۱۹۹۶ بود.
قوانین دیگر در ایالات متحده شامل (موارد زیر می باشد):
- قانون استفادهٔ منطقی (قانون آمریکا): این قانون مقدار آب مشخصی را برای صاحب زمین تضمین نمیکند اما مجوز استخراج نامحدود تا زمانی که بهرهبرداری به طور غیر منطقی به چاههای دیگر یا نظام آبخوان آسیب وارد نکند، را صادر می کند. معمولاً این قانون ارزش زیادی برای مصارف تاریخی قائل است و از کاربردهای جدید که با استفادهٔ قبلی تداخل دارد، جلوگیری می کند.
- بررسی دقیق آب زیرزمینی مبنی بر معاملات املاک در ایالات متحده: در ایالات متحده، برمبنای معاملات املاک و مستغلات تجاری، هم آب زیرزمینی و هم خاک مورد بررسی قرار می گیرند. در مکانهای از پیش آلوده شده که اصلاح شدهاند (brownfield) فاز یک ارزیابی زیستمحیطی سایت معمولاً برای بررسی و آشکارسازی مسائل احتمالی (بالقوه) آلودگی انجام میشود. در San Fernando Valley کالیفرنیا، قراردادهای املاک برای انتقال ملک و دارایی، تحت نظر آزمایشگاه میدانی SSFL منعقد می شوند و بندهایی وجود دارد که فروشنده را از مسئولیت عواقب آلودگی آب زیرزمینی موجود یا آلودگی آیندهٔ آبخوان آزاد می کند.
هندویرایش
در هند، ۶۵ درصد آبیاری از آب زیرزمینی صورت می گیرد. تنظیم آب زیرزمینی توسط دولت مرکزی و چهار سازمان ۱) کمیسیون مرکزی آب ۲) آب زیرزمینی مرکزی ۳) ادارهٔ مرکزی آب زیرزمینی ۴) هیئت مرکزی کنترل آلودگی، کنترل و حفظ میشود.[۲۷]
قوانین، مقررات و طرحهای مرتبط با آب زیرزمینی هند:
- Atal Bhujal Yojana (طرح آب زیرزمینی Atal) یک طرح ۵ ساله (۲۰۲۴-۲۵ تا ۲۰۲۰-۲۱) با هزینهٔ ۸۵۴ میلیون دلار ایالات متحده، برای مدیریت طرف تقاضا با نقشههای امنیت و سلامت آب است که در سطح دهیاری روستا برای اجرا در ۸٬۳۵۰ روستای دارای بحران آب در ۷ ایالت شامل Haryana، Gujarat، Karnataka، Madhya Pradesh، Maharashtra، Rajasthan و Uttar Pradesh تصویب شد.[۲۸]
- لایحهٔ چارچوب ملی آب ۲۰۱۳ تضمین میکند که آب زیرزمینی هند یک منبع عمومی است و قرار نیست که توسط شرکت ها از طریق خصوصی آب مورد بهرهبرداری قرار گیرد. لایحهٔ چارچوب ملی آب به همه اجازهٔ دسترسی به آب آشامیدنی پاک، طبق مادهٔ ۲۱ قانون «حق زندگی» در قانون اساسی هند را میدهد.[۲۷]
- در سال ۲۰۱۲ سیاست ملی آب به روز رسانی شد که پیشتر در سال ۱۹۸۷ تصویب شده بود و در سال ۲۰۰۲ و بعد از آن در سال ۲۰۱۲ به روز رسانی شد.[۲۹]
- در سال ۲۰۱۱ دولت هند یک لایحهٔ الگو را برای مدیریت آب زیرزمینی تعریف کرد؛ این الگو، دولتهای ایالتی را که میتوانند قوانینی را در مورد استفاده و تنظیم آب زیرزمینی به اجرا بگذارند، انتخاب میکند.
- قانون Easement 1882 به صاحبان زمین نسبت به آب زیرزمینی و سطح زمینشان اولویت میدهد و به آنها اجازه میدهد که تا زمانی آب در زمین آنها باشد؛ به اندازهای که می خواهند از آن برداشت کنند. این قانون، دولت را از اجرای مقررات آب زیرزمینی منع میکند و به بسیاری از مالکان زمین اجازه میدهد که آب زیرزمینی خودشان را، خصوصیسازی کنند. بخش ۷ این قانون اظهار میدارد که هر مالک زمین حق دارد تا در محدودهٔ خودش تمام آب زیر زمین خود را و سطح آن را که از یک کانال مشخص عبور نمیکند، جمعآوری کند.[۲۷]
کاناداویرایش
بخش عمدهای از جمعیت کانادا به استفاده از آب زیرزمینی متکی است. در کانادا 8٫9 میلیون نفر یا ۳۰ درصد جمعیت کانادا برای مصارف خانگی به آب زیرزمینی متکی هستند و تقریباً دو-سوم این کاربران در مناطق روستایی زندگی میکنند.[۳۰]
- قانون اساسی ۱۸۶۷ به هیچ یک از دستههای دولت کانادایی اختیار آب زیرزمینی را نمیدهد، این موضوع عمدتاً تحت قلمرو قدرت استانی میباشد.
- دولتهای فدرال و استانی میتوانند هنگامی که با مسائل ملی آب، کشاورزی، سلامتی و آب های بین استانی مواجه میشوند، مسئولیتها را به اشتراک بگذارند.
- صلاحیت تصمیمگیری فدرال در مناطق مختلف شامل آبهای مرزی/فرامرزی، محل ماهیگیری، ناوبری و آب های مربوط به زمینهای فدرال، منابع جوامع بومی و در قلمروهای ایشان برقرار است.
- صلاحیت تصمیمگیری فدرال بر آب زیرزمینی هنگامی که سفرههای آب از مرزهای بین استانی یا بینالمللی عبور میکنند، برقرار است.
ایرانویرایش
بر اساس قانون توزیع عادلانهٔ آب (فصل ۵) این موارد جرم محسوب میشود (مجازات از ۱۰ تا ۵۰ ضربه شلاق یا از ۱۵ روز تا ۳ ماه حبس)[۳۱]:
1- شخصی که بدون اجازه برای دسترسی به آب، چاه حفر کند.
2- شخصی که بدون اجازه از آب زیرزمینی برداشت کند.
جستارهای وابستهویرایش
در ویکیانبار پروندههایی دربارهٔ آبهای زیرزمینی موجود است. |
منابعویرایش
- ↑ Europa – The Ocean Moon: Search For An Alien Biosphere.
- ↑ National Geographic Almanac of Geography.
- ↑ ۳٫۰ ۳٫۱ ۳٫۲ ۳٫۳ «What is Hydrology?». www.usgs.gov. دریافتشده در ۲۰۲۰-۱۰-۱۷.
- ↑ کتاب جغرافیای آبها از دکتر سعداله ولایتی
- ↑ «Where is Earth's Water?». www.usgs.gov. دریافتشده در ۲۰۲۰-۱۰-۱۷.
- ↑ Water in crisis : a guide to the world's fresh water resources.
- ↑ Bethke, Craig M.; Johnson, Thomas M. (2008). "Groundwater Age and Groundwater Age Dating". Annual Review of Earth and Planetary Sciences. 36 (1): 121–152. doi:10.1146/annurev.earth.36.031207.124210. ISSN 0084-6597.
- ↑ Gleeson, Tom; Befus, Kevin M.; Jasechko, Scott; Luijendijk, Elco; Cardenas, M. Bayani (2016). "The global volume and distribution of modern groundwater". Nature Geoscience. 9 (2): 161–167. doi:10.1038/ngeo2590. ISSN 1752-0908.
- ↑ Assessment of groundwater evaporation through groundwater model with spatio-temporally variable fluxes (PDF).
- ↑ Al-Kasimi, S. M. «Existence of Ground Vapor-Flux Up-Flow: Proof & Utilization in Planting The Desert Using Reflective Carpet». www.scirp.org.
- ↑ ۱۱٫۰ ۱۱٫۱ Sophocleous, Marios (2002-02-01). "Interactions between groundwater and surface water: the state of the science". Hydrogeology Journal. 10 (1): 52–67. doi:10.1007/s10040-001-0170-8. ISSN 1435-0157.
- ↑ Ludwig, Donald; Hilborn, Ray; Walters, Carl (1993-04-02). "Uncertainty, Resource Exploitation, and Conservation: Lessons from History". Science. 260 (5104): 17–36. doi:10.1126/science.260.5104.17. ISSN 0036-8075. PMID 17793516.
- ↑ Sommer, Bea; Sommer, Bea; Horwitz, Pierre; Horwitz, Pierre (2001). "Water quality and macroinvertebrate response to acidification following intensified summer droughts in a Western Australian wetland". Marine and Freshwater Research. 52 (7): 1015–1021. doi:10.1071/mf00021. ISSN 1448-6059.
- ↑ Zektser, S.; Loáiciga, H. A.; Wolf, J. T. (2005-02-01). "Environmental impacts of groundwater overdraft: selected case studies in the southwestern United States". Environmental Geology. 47 (3): 396–404. doi:10.1007/s00254-004-1164-3. ISSN 1432-0495.
- ↑ Perrone, Debra; Jasechko, Scott (2019). "Deeper well drilling an unsustainable stopgap to groundwater depletion". Nature Sustainability. 2 (8): 773–782. doi:10.1038/s41893-019-0325-z. ISSN 2398-9629.
- ↑ "Punjab: A tale of prosperity and decline". State of the Planet. 2009-07-28. Retrieved 2020-10-18.
- ↑ Dokka, Roy K. (2011). "The role of deep processes in late 20th century subsidence of New Orleans and coastal areas of southern Louisiana and Mississippi". Journal of Geophysical Research: Solid Earth. 116 (B6). doi:10.1029/2010JB008008. ISSN 2156-2202.
- ↑ Sneed, Michelle; Brandt, Justin T.; Solt, Mike (2013). "Land subsidence along the Delta-Mendota Canal in the northern part of the San Joaquin Valley, California, 2003-10". Reston, VA: 100.
- ↑ Tosi, Luigi; Teatini, Pietro; Strozzi, Tazio; Da Lio, Cristina (2014). Lollino, Giorgio; Manconi, Andrea; Locat, Jacques; Huang, Yu; Canals Artigas, Miquel, eds. "Relative Land Subsidence of the Venice Coastland, Italy". Engineering Geology for Society and Territory – Volume 4. Cham: Springer International Publishing: 171–173. doi:10.1007/978-3-319-08660-6_32. ISBN 978-3-319-08660-6.
- ↑ Polemio, M.; Dragone, V.; Limoni, P. P. (2009-07-01). "Monitoring and methods to analyse the groundwater quality degradation risk in coastal karstic aquifers (Apulia, Southern Italy)". Environmental Geology. 58 (2): 299–312. doi:10.1007/s00254-008-1582-8. ISSN 1432-0495.
- ↑ Fleury, Perrine; Bakalowicz, Michel; de Marsily, Ghislain (2007-06-10). "Submarine springs and coastal karst aquifers: A review". Journal of Hydrology. 339 (1): 79–92. doi:10.1016/j.jhydrol.2007.03.009. ISSN 0022-1694.
- ↑ Geogenic Contamination Handbook – Addressing Arsenic and Fluoride in Drinking Water (PDF).
- ↑ Winkel, Lenny; Berg, Michael; Amini, Manouchehr; Hug, Stephan J.; Annette Johnson, C. (2008). "Predicting groundwater arsenic contamination in Southeast Asia from surface parameters". Nature Geoscience. 1 (8): 536–542. doi:10.1038/ngeo254. ISSN 1752-0908.
- ↑ Rodríguez-Lado, Luis; Sun, Guifan; Berg, Michael; Zhang, Qiang; Xue, Hanbin; Zheng, Quanmei; Johnson, C. Annette (2013-08-23). "Groundwater Arsenic Contamination Throughout China". Science. 341 (6148): 866–868. doi:10.1126/science.1237484. ISSN 0036-8075. PMID 23970694.
- ↑ Amini, Manouchehr; Abbaspour, Karim C.; Berg, Michael; Winkel, Lenny; Hug, Stephan J.; Hoehn, Eduard; Yang, Hong; Johnson, C. Annette (2008-05-15). "Statistical Modeling of Global Geogenic Arsenic Contamination in Groundwater". Environmental Science & Technology. 42 (10): 3669–3675. doi:10.1021/es702859e. ISSN 0013-936X.
- ↑ US EPA, OW (2015-10-13). "Ground Water Rule". US EPA (به English). Retrieved 2020-10-18.
- ↑ ۲۷٫۰ ۲۷٫۱ ۲۷٫۲ Overview of Groundwater in India (PDF).
- ↑ Dec 24, Vishwa Mohan / TNN /; 2019; Ist, 21:06. "Centre approves Rs 6,000 crore scheme to manage groundwater resources in over 8,000 villages across seven states | India News - Times of India". The Times of India. Retrieved 2020-10-18.
- ↑ National Water Policy 2002 (PDF).
- ↑ Groundwater Use in Canada (PDF).
- ↑ «قانون توزیع عادلانهٔ آب - ویکینبشته». fa.wikisource.org. دریافتشده در ۲۰۲۰-۱۰-۱۸.
- Viessman, W.et al, introduction to hydrology IEP, New york, 1972.
- Brown, Lester (Lead Author); Brian Black and Galal Hassan Galal Hussein (Topic Editors). 2007. "*Aquifer depletion." In: Encyclopedia of Earth. Eds. Cutler J. Cleveland (Washington, D.C. : Environmental Information Coalition, National Council for Science and the Environment). [First published in the Encyclopedia of Earth September 14, 2006; Last revised February 12, 2007; Retrieved July 15, 2008].
- https://web.archive.org/web/20080729004234/http://www.earth-policy.org/Books/Out/Ote6_2.htm